Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Glycine transporters are differentially expressed among CNS cells

F Zafra, C Aragon, L Olivares, NC Danbolt, C Gimenez and J Storm-Mathisen
Journal of Neuroscience 1 May 1995, 15 (5) 3952-3969; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-03952.1995
F Zafra
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Aragon
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Olivares
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NC Danbolt
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Gimenez
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Storm-Mathisen
Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autonoma de Madrid, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Glycine is the major inhibitory neurotransmitter in the spinal cord and brainstem and is also required for the activation of NMDA receptors. The extracellular concentration of this neuroactive amino acid is regulated by at least two glycine transporters (GLYT1 and GLYT2). To study the localization and properties of these proteins, sequence- specific antibodies against the cloned glycine transporters have been raised. Immunoblots show that the 50–70 kDa band corresponding to GLYT1 is expressed at the highest concentrations in the spinal cord, brainstem, diencephalon, and retina, and, in a lesser degree, to the olfactory bulb and brain hemispheres, whereas it is not detected in peripheral tissues. Pre-embedding light and electron microscopic immunocytochemistry show that GLYT1 is expressed in glial cells around both glycinergic and nonglycinergic neurons except in the retina, where it is expressed by amacrine neurons, but not by glia. The expression of a 90–110 kDa band corresponding to GLYT2 is restricted to the spinal cord, brain-stem, and cerebellum; in addition, very low levels occur in the diencephalon. GLYT2 is found in presynaptic elements of neurons thought to be glycinergic. However, in the cerebellum, GLYT2 is expressed both in terminal boutons and in glial elements. The physiological consequences of the regional and cellular distributions of these two proteins as well as the possibility of the existence of an unidentified neuronal form of GLYT1 are discussed.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glycine transporters are differentially expressed among CNS cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Glycine transporters are differentially expressed among CNS cells
F Zafra, C Aragon, L Olivares, NC Danbolt, C Gimenez, J Storm-Mathisen
Journal of Neuroscience 1 May 1995, 15 (5) 3952-3969; DOI: 10.1523/JNEUROSCI.15-05-03952.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Glycine transporters are differentially expressed among CNS cells
F Zafra, C Aragon, L Olivares, NC Danbolt, C Gimenez, J Storm-Mathisen
Journal of Neuroscience 1 May 1995, 15 (5) 3952-3969; DOI: 10.1523/JNEUROSCI.15-05-03952.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.