Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Individual variation in and androgen-modulation of the sodium current in electric organ

MB Ferrari, ML McAnelly and HH Zakon
Journal of Neuroscience 1 May 1995, 15 (5) 4023-4032; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-04023.1995
MB Ferrari
Department of Zoology, University of Texas at Austin 78712, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ML McAnelly
Department of Zoology, University of Texas at Austin 78712, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HH Zakon
Department of Zoology, University of Texas at Austin 78712, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Electric fish of the genus Sternopygus produce a sinusoidal electric organ discharge (EOD) of low frequencies in males, high frequencies in females, and overlapping and intermediate frequencies in juveniles. Correspondingly, the cells of the electric organ, the electrocytes, generate action potentials which are of long duration in mature males, short duration in females, and intermediate duration in immatures. The androgen dihydrotestosterone (DHT) lowers EOD frequency and increases electrocyte action potential duration. We examined the electrocytes under voltage clamp to determine whether variations in the kinetic properties of the Na+ current might underlie these phenomena. We found that the fast inactivation time constants of the peak Na+ current (0 mV) ranged from 0.5 to 4.7 msec and varied systematically with EOD frequency and action potential duration. Voltage dependence of steady- state inactivation also varied with EOD frequency with the midpoint of inactivation being more positive in fish with low EOD frequencies. There was no correlation between the voltage at which the Na+ current activates, voltage at peak current, reversal potential, rate of recovery from inactivation, or TTX sensitivity and EOD frequency. We tested whether DHT influenced Na+ current inactivation by recording from electrocytes before and after juvenile fish of both sexes were implanted with a DHT-containing or empty capsule. We found that inactivation time constants were significantly slower in DHT implanted, but not control, fish. This is the first observation of functionally relevant individual variation in the kinetics of a Na+ current and the first demonstration that the kinetics of a Na+ current may be modulated by an androgen.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Individual variation in and androgen-modulation of the sodium current in electric organ
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Individual variation in and androgen-modulation of the sodium current in electric organ
MB Ferrari, ML McAnelly, HH Zakon
Journal of Neuroscience 1 May 1995, 15 (5) 4023-4032; DOI: 10.1523/JNEUROSCI.15-05-04023.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Individual variation in and androgen-modulation of the sodium current in electric organ
MB Ferrari, ML McAnelly, HH Zakon
Journal of Neuroscience 1 May 1995, 15 (5) 4023-4032; DOI: 10.1523/JNEUROSCI.15-05-04023.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.