Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation

AI Levey, SM Edmunds, V Koliatsos, RG Wiley and CJ Heilman
Journal of Neuroscience 1 May 1995, 15 (5) 4077-4092; DOI: https://doi.org/10.1523/JNEUROSCI.15-05-04077.1995
AI Levey
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SM Edmunds
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Koliatsos
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RG Wiley
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Heilman
Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A family of muscarinic ACh receptor genes are expressed in hippocampus, but little is known about the localization of the encoded proteins and their regulation by cholinergic innervation. Subtype-specific antibodies were used to localize m1-m4 proteins in the hippocampal formation by immunocytochemistry and to determine the alterations in the subtypes following deafferentation. Each of the receptors is differentially localized in Ammon's horn and dentate gyrus, with highly complementary distributions. m1 is widely expressed in somata and dendrites of pyramidal neurons and granule cells in dentate gyrus. m2 immunoreactivity is expressed mostly in nonpyramidal neurons, and in several discrete bands of fibers and puncta surrounding pyramidal neurons and other layers. m3 is enriched in pyramidal neurons, the neuropil in stratum lacunosum-moleculare and the outer third of the molecular layer of dentate gyrus. m4 is enriched in nonpyramidal neurons, in fiber pathways (alveus, fimbria, and hippocampal commissure), and in the inner third of the molecular layer. Fimbria- fornix lesions decreased ipsilateral m2- and m4-immunoreactive axons in the fimbria, with no apparent changes in the distribution of any of the receptors in hippocampus. 192-IgG immunotoxin lesions of the cholinergic septohippocampal projections, which spare noncholinergic projections, produced a small decrease in m2-immunoreactive fibers in the fimbria with no other major changes in the distribution of subtypes. Immunoprecipitation studies at 3–28 d following fimbria- fornix lesions revealed a 25% loss of m2 at 3 d in hippocampus, and upregulation of both m1 (20–29% at 7–14 d) and m4 (44% at 28 d). Thus, the vast majority of muscarinic receptor subtypes are intrinsic to the hippocampal formation and/or nonseptal hippocampal afferents. A subset of m2 and m4 are presynaptically localized, with m2 in cholinergic axons and m2 and m4 possibly in noncholinergic axons that comprise the septohippocampal pathway. The unique laminar and regional distributions of m1-m4 in the hippocampus reflect differential cellular and subcellular distributions of the subtypes and/or selective association of receptor subtypes with certain afferent and intrinsic connections. These results indicate that each subtype likely has a different role in cholinergic modulation of excitatory and inhibitory hippocampal circuits.

Back to top

In this issue

The Journal of Neuroscience: 15 (5)
Journal of Neuroscience
Vol. 15, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation
AI Levey, SM Edmunds, V Koliatsos, RG Wiley, CJ Heilman
Journal of Neuroscience 1 May 1995, 15 (5) 4077-4092; DOI: 10.1523/JNEUROSCI.15-05-04077.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation
AI Levey, SM Edmunds, V Koliatsos, RG Wiley, CJ Heilman
Journal of Neuroscience 1 May 1995, 15 (5) 4077-4092; DOI: 10.1523/JNEUROSCI.15-05-04077.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.