Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Critical role of the capsaicin-sensitive nerve fibers in the development of the causalgic symptoms produced by transecting some but not all of the nerves innervating the rat tail

YI Kim, HS Na, JS Han and SK Hong
Journal of Neuroscience 1 June 1995, 15 (6) 4133-4139; https://doi.org/10.1523/JNEUROSCI.15-06-04133.1995
YI Kim
Neuroscience Research Institute, College of Medicine, Korea University, Seoul.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HS Na
Neuroscience Research Institute, College of Medicine, Korea University, Seoul.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JS Han
Neuroscience Research Institute, College of Medicine, Korea University, Seoul.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SK Hong
Neuroscience Research Institute, College of Medicine, Korea University, Seoul.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We investigated the role of capsaicin-sensitive small diameter fibers in the development of the thermal and mechanical allodynia in a new rat model for neuropathic pain, produced by transecting some but not all of the nerves innervating the tail. Capsaicin (50 mg/kg, s.c.) injected neonatally prior to the nerve injury produced thermal hypoalgesia in the tail the degree of which was variable across individual rats, presumably as a result of variable degeneration of the small diameter fibers. When subjected to the nerve injury, the animals with moderate thermal hypoalgesia exhibited signs of pain (e.g., tail flick) to normally innocuous mechanical stimuli applied to the tail with von Frey hairs (4.9 mN or 19.6 mN bending force), but not to thermal stimuli given by immersion of the tail into cold (4 degrees C) or warm (40 degrees C) water. The animals with marked thermal hypoalgesia, on the other hand, exhibited no signs of pain either to the mechanical or to the thermal stimuli. These results suggest that the capsaicin-sensitive fibers are critical in the development of both the mechanical and thermal allodynia. It is hypothesized that the destruction of A delta- and C-nociceptive fibers by capsaicin prevented activities induced in these fibers by the nerve injury from producing a central sensitization and thus allodynia.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Critical role of the capsaicin-sensitive nerve fibers in the development of the causalgic symptoms produced by transecting some but not all of the nerves innervating the rat tail
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Critical role of the capsaicin-sensitive nerve fibers in the development of the causalgic symptoms produced by transecting some but not all of the nerves innervating the rat tail
YI Kim, HS Na, JS Han, SK Hong
Journal of Neuroscience 1 June 1995, 15 (6) 4133-4139; DOI: 10.1523/JNEUROSCI.15-06-04133.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Critical role of the capsaicin-sensitive nerve fibers in the development of the causalgic symptoms produced by transecting some but not all of the nerves innervating the rat tail
YI Kim, HS Na, JS Han, SK Hong
Journal of Neuroscience 1 June 1995, 15 (6) 4133-4139; DOI: 10.1523/JNEUROSCI.15-06-04133.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.