Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons

ES Nisenbaum and CJ Wilson
Journal of Neuroscience 1 June 1995, 15 (6) 4449-4463; DOI: https://doi.org/10.1523/JNEUROSCI.15-06-04449.1995
ES Nisenbaum
Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis 38163, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Wilson
Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis 38163, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many of the nonlinear membrane properties displayed by neostriatal spiny projection neurons are conferred by their voltage-gated potassium (K+) currents, including an inwardly rectifying current (IKir), fast (IAt), and slowly (IAs)-inactivating A-currents, and a slow, noninactivating current. The relative contribution of these K+ currents to the pronounced inward and outward rectification of the current- voltage (I-V) relationship of spiny neurons was investigated in a neostriatal slice preparation. Manipulation of the equilibrium potential for K+ (EK) showed that the voltage dependence of activation of inward rectification was identical to that of IKir. In addition, application of barium (100 microM), which is known to reduce IKir in a time- and voltage-dependent manner, had equivalent effects on inward rectification. Subsequent application of cesium (3 mM) or tetraethylammonium (TEA, 25 mM) blocked inward rectification in a solely voltage-dependent fashion consistent with the action of these blockers on IKir. Administration of 4-aminopyridine (4-AP, 100 microM) at concentrations that selectively depress IAs, reduced outward rectification of spiny neurons at subthreshold membrane potentials. Higher concentrations of 4-AP (2 mM), which block both IAs and IAt, revealed an early transient overshoot in voltage deflections at potentials near spike threshold, but rectification persisted at the end of the responses. The transient overshoot and the residual rectification were eliminated by TEA (25 mM), a blocker of the slow, noninactivating K+ current. Collectively, these results indicate that all three depolarization-activated K+ currents contribute to outward rectification at different times and membrane potentials defined by their voltage dependence of activation and kinetics of inactivation. The spontaneous activity of neostriatal spiny neurons recorded in intact animals is characterized by sustained and limited shifts in membrane potential from relatively hyperpolarized potentials to depolarized potentials near spike threshold. The present data suggest that the hyperpolarized state is determined principally by IKir and the limits on the depolarized state are defined by IAf, IAs, and the noninactivating current. These outward K+ currents also are hypothesized to govern the spike discharge characteristics once the depolarized state has been reached.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons
ES Nisenbaum, CJ Wilson
Journal of Neuroscience 1 June 1995, 15 (6) 4449-4463; DOI: 10.1523/JNEUROSCI.15-06-04449.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons
ES Nisenbaum, CJ Wilson
Journal of Neuroscience 1 June 1995, 15 (6) 4449-4463; DOI: 10.1523/JNEUROSCI.15-06-04449.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.