Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel

PH Reinhart and IB Levitan
Journal of Neuroscience 1 June 1995, 15 (6) 4572-4579; DOI: https://doi.org/10.1523/JNEUROSCI.15-06-04572.1995
PH Reinhart
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
IB Levitan
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Type-2 calcium-dependent potassium (KCa) channels from mammalian brain, reconstituted into planar phospholipid bilayers, are modulated by ATP or ATP analogs via an endogenous protein kinase activity intimately associated with the channel (Chung et al., 1991). We show here that the endogenous protein kinase activity is protein kinase C (PKC)-like because (1) modulation by ATP can be mimicked by exogenous PKC, and (2) the effects of ATP can be blocked by PKC(19–36), a specific peptide inhibitor of PKC. Furthermore, adding the PKC inhibitor peptide after the addition of ATP reverses the modulation produced by ATP, suggesting that there is a phosphoprotein phosphatase activity closely associated with type-2 KCa channels. Consistent with this idea is the finding that microcystin, a non-specific phosphatase inhibitor, enhances the modulation of KCa channel activity by ATP. Inhibitor-1, a specific protein inhibitor of phosphoprotein phosphatase-1, also enhances the effect of ATP, suggesting that the endogenous phosphatase activity is phosphatase-1-like. The results imply that type-2 KCa channels exist as part of a regulatory complex that includes a PKC-like protein kinase and a phosphatase-1-like phosphoprotein phosphatase, both of which participate in the modulation of channel function.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel
PH Reinhart, IB Levitan
Journal of Neuroscience 1 June 1995, 15 (6) 4572-4579; DOI: 10.1523/JNEUROSCI.15-06-04572.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel
PH Reinhart, IB Levitan
Journal of Neuroscience 1 June 1995, 15 (6) 4572-4579; DOI: 10.1523/JNEUROSCI.15-06-04572.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.