Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin

L Chen, Y Gu and LY Huang
Journal of Neuroscience 1 June 1995, 15 (6) 4602-4611; DOI: https://doi.org/10.1523/JNEUROSCI.15-06-04602.1995
L Chen
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555–1069, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Gu
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555–1069, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LY Huang
Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555–1069, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dynorphin is one of the endogenous opioids that modulates the excitability of nociceptive (pain-sensing) neurons. We have shown recently that dynorphin blocks NMDA-activated currents directly without the participation of kappa-opioid receptors. In order to understand the mechanism underlying this novel action of dynorphin, we examined, in detail, the interactions between dynorphin and NMDA receptors in isolated trigeminal neurons. Dynorphin reversibly blocks NMDA-activated current (INMDA). The onset and recovery of the block were determined with concentration jump experiments. The association rate (k+) of dynorphin(1–17) is 4.9 x 10(6) sec-1 M-1 and the dissociation rate (k-) is 7.5 sec-1. The apparent dissociation constant (KD) of dynorphin, calculated from these rate constants, is 1.6 microM. Dynorphin does not change the EC50 of NMDA, nor the potentiating action of glycine. The binding site for dynorphin is distinct from that of Zn2+ or H+. Upon treatment with the disulfide reducing agent dithiothreitol (DTT), NMDA receptors become less susceptible to dynorphin block. The affinity of dynorphin for the modified NMDA receptors is reduced by 2.7-fold. In analyses of single NMDA channels in cell-free patches, we found that dynorphin shortens the mean open time, decreases the probability of opening of NMDA channels, but has no effect on the single channel conductance. These results suggest that dynorphin interacts with a site conformationally linked with the redox site(s) on the NMDA receptor, thus altering the gating properties of the channel.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin
L Chen, Y Gu, LY Huang
Journal of Neuroscience 1 June 1995, 15 (6) 4602-4611; DOI: 10.1523/JNEUROSCI.15-06-04602.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin
L Chen, Y Gu, LY Huang
Journal of Neuroscience 1 June 1995, 15 (6) 4602-4611; DOI: 10.1523/JNEUROSCI.15-06-04602.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.