Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis

Y Zhao and BG Szaro
Journal of Neuroscience 1 June 1995, 15 (6) 4629-4640; DOI: https://doi.org/10.1523/JNEUROSCI.15-06-04629.1995
Y Zhao
Department of Biological Sciences, University at Albany, State University of New York 12222, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BG Szaro
Department of Biological Sciences, University at Albany, State University of New York 12222, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurofilaments have been proposed to regulate axonal stability and diameter through changes in number and subunit composition. We have found that pathway and target innervation directly influence the molecular composition of neurofilaments within regenerating optic axons of Xenopus laevis. Immunocytochemistry was used to examine neurofilaments within two abnormal visual pathways. The first was an aberrant, transient retinoretinal projection, which formed when some axons entered the contralateral optic nerve at the chiasm. The second was formed by regenerating axons deprived of their normal targets by surgical ablation of both optic tecta. Distal to an orbital nerve crush, the neurofilament proteins NF-L, NF-M, NF-H, and XNIF disappear from degenerating fibers. In normally regenerating axons, these neurofilament proteins emerge in a progression reminiscent of development. In the aberrant retinoretinal projection, levels of XNIF, NF-L, and -M remained lower than in normally regenerating axons, whereas NF-H and a phosphorylated form of NF-M were undetectable for at least 35 d after nerve crush. Normally, these two latter forms reappear between 15 and 21 d after surgery. Thus, this transient, incorrect axonal projection expressed neurofilaments in a very different pattern from correctly regenerating axons. In tecta-ablated frogs, staining of phosphorylation independent epitopes of XNIF, NF-L, and -M increased normally after axons entered the tract, but that of NF-H and phosphorylated NF-M remained low for at least 42 d after axotomy. Thus, separate parts of the visual pathway influence the complexity of neurofilaments.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis
Y Zhao, BG Szaro
Journal of Neuroscience 1 June 1995, 15 (6) 4629-4640; DOI: 10.1523/JNEUROSCI.15-06-04629.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis
Y Zhao, BG Szaro
Journal of Neuroscience 1 June 1995, 15 (6) 4629-4640; DOI: 10.1523/JNEUROSCI.15-06-04629.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.