Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide

IM Stanford and MG Lacey
Journal of Neuroscience 1 June 1995, 15 (6) 4651-4657; DOI: https://doi.org/10.1523/JNEUROSCI.15-06-04651.1995
IM Stanford
Department of Pharmacology, Medical School, University of Birmingham, Edgbaston, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MG Lacey
Department of Pharmacology, Medical School, University of Birmingham, Edgbaston, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The presence of adenosine triphosphate-regulated potassium channels (K- ATPs) in midbrain dopamine neurons is currently in dispute. This was investigated using whole-cell patch-clamp recordings from dopamine neurons in slices of midbrain from 9–12-d-old rats. Intracellular dialysis with Mg2+ ATP-free solutions resulted in a membrane hyperpolarization (14 +/- 6 mV), or outward current (102 +/- 27 pA) in voltage clamp, which developed over 14 +/- 1.6 min. These hyperpolarizations and outward currents were reversed by the K-ATP- blocking sulfonylureas tolbutamide (100 microM) and glibenclamide (3 microM). This sulfonylurea-sensitive outward current was associated with an increase in a nonrectifying (between -50 and -130 mV) conductance of approximately 2 nS, with a reversal potential of -100 mV (in 2.5 mM extracellular potassium), consistent with a potassium conductance increase. When the dialyzate contained Mg2+ATP (2 mM), no slowly developing hyperpolarization or outward current occurred, and tolbutamide (200 microM) and glibenclamide (10 microM) did not affect membrane potential or current. Additionally, the “potassium channel activators” (KCAs) lemakalim (200 microM) and pinacidil (50 microM) were also without effect on the membrane potential or holding current in these cells. The hyperpolarizations and outward currents caused by baclofen and quinpirole, agonists at GABAB and D2 receptors, respectively, were neither blocked by sulfonylureas nor occluded by the current resulting from depletion of intracellular ATP. Thus, these K- ATPs appear independent of the potassium channels coupled to GABAB and D2 receptors in these cells. This ATP-regulated potassium conductance may constitute a protective mechanism during anoxia or hypoglycemia, by restricting membrane depolarization of dopamine neurons when intracellular ATP levels fall.

Back to top

In this issue

The Journal of Neuroscience: 15 (6)
Journal of Neuroscience
Vol. 15, Issue 6
1 Jun 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide
IM Stanford, MG Lacey
Journal of Neuroscience 1 June 1995, 15 (6) 4651-4657; DOI: 10.1523/JNEUROSCI.15-06-04651.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide
IM Stanford, MG Lacey
Journal of Neuroscience 1 June 1995, 15 (6) 4651-4657; DOI: 10.1523/JNEUROSCI.15-06-04651.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.