Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Neuromuscular metamorphosis in the moth Manduca sexta: hormonal regulation of synapses loss and remodeling

JW Truman and SE Reiss
Journal of Neuroscience 1 July 1995, 15 (7) 4815-4826; https://doi.org/10.1523/JNEUROSCI.15-07-04815.1995
JW Truman
Department of Zoology, University of Washington, Seattle 98195, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SE Reiss
Department of Zoology, University of Washington, Seattle 98195, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The motor system of the moth Manduca sexta is completely remodeled during the pupal-adult transformation (PAT). It is stable until the formation of the pupal stage (0% PAT), but larval motor end plates become disrupted by 5% PAT and are lost by 10% PAT, at the time that the muscle has begun to degenerate. Most of the axonal arbor is retracted by 15% with the first signs of adult sprouts appearing by 20% PAT, coinciding with proliferative activity in the remains of the larval muscle. Extensive growth of the axonal arbor begins after 30% PAT, with an initial phase of rapid longitudinal growth (35–50% PAT) and then the production of short transverse branches that then form sprays of end plates (50–70% PAT). Growth and maturation of the end plates occupies the remainder of metamorphosis. Neuromuscular metamorphosis was interfered with by systemic or local treatment with a mimic of the insect juvenile hormone. The results of these treatments suggest that some aspects of the removal of larval axonal branches requires cues from the target. For the sprouting response, the rapid longitudinal growth over the muscle appears to be due to ecdysteroids acting directly on the cell body of the motoneuron. By contrast, the subsequent production and maintenance of transverse sprouts and the corresponding end plates may be an indirect response to stimulation of muscle growth and differentiation by ecdysteroids.

Back to top

In this issue

The Journal of Neuroscience: 15 (7)
Journal of Neuroscience
Vol. 15, Issue 7
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuromuscular metamorphosis in the moth Manduca sexta: hormonal regulation of synapses loss and remodeling
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neuromuscular metamorphosis in the moth Manduca sexta: hormonal regulation of synapses loss and remodeling
JW Truman, SE Reiss
Journal of Neuroscience 1 July 1995, 15 (7) 4815-4826; DOI: 10.1523/JNEUROSCI.15-07-04815.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neuromuscular metamorphosis in the moth Manduca sexta: hormonal regulation of synapses loss and remodeling
JW Truman, SE Reiss
Journal of Neuroscience 1 July 1995, 15 (7) 4815-4826; DOI: 10.1523/JNEUROSCI.15-07-04815.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.