Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
PreviousNext
Articles

The orbital and medial prefrontal circuit through the primate basal ganglia

SN Haber, K Kunishio, M Mizobuchi and E Lynd-Balta
Journal of Neuroscience 1 July 1995, 15 (7) 4851-4867; DOI: https://doi.org/10.1523/JNEUROSCI.15-07-04851.1995
SN Haber
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Kunishio
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Mizobuchi
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Lynd-Balta
Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ventral striatum is considered an interface between limbic and motor systems. We followed the orbital and medial prefrontal circuit through the monkey basal ganglia by analyzing the projection from this cortical area to the ventral striatum and the representation of orbitofrontal cortex via the striatum, in the globus pallidus and substantia nigra. Following injections of Lucifer yellow and horse radish peroxidase into the medial ventral striatum, there is a very densely labeled distribution of cells in areas 13a and 13b, primarily in layers V and VI, and in medial prefrontal areas 32 and 25. Injections into the shell of the nucleus accumbens labeled primarily areas 25 and 32. The reaction product in the globus pallidus and the substantia nigra supports previous studies demonstrating that efferent projections from the ventral striatum are represented topographically in the ventral pallidum and nontopographically in the substantia nigra, pars compacta. Tritiated amino acid or PHA-L tracer injections into orbitofrontal cortex produce dense patches of terminal labeling along the medial edge of the caudate nucleus and the dorsal part of the nucleus accumbens. These results demonstrate that the orbital prefrontal cortex projects primarily to the medial edge of the ventral striatum and to the core of the nucleus accumbens. The arrangement of terminals in the globus pallidus and substantia nigra show two different patterns. Thus, the orbital and medial prefrontal cortex is represented in a confined region of the globus pallidus but throughout an extensive area of the dorsal substantia nigra. Terminals are extensive throughout the region of the dopaminergic neurons, suggesting that this input may influence a wide area of both the striatum and frontal cortex.

Back to top

In this issue

The Journal of Neuroscience: 15 (7)
Journal of Neuroscience
Vol. 15, Issue 7
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The orbital and medial prefrontal circuit through the primate basal ganglia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
The orbital and medial prefrontal circuit through the primate basal ganglia
SN Haber, K Kunishio, M Mizobuchi, E Lynd-Balta
Journal of Neuroscience 1 July 1995, 15 (7) 4851-4867; DOI: 10.1523/JNEUROSCI.15-07-04851.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The orbital and medial prefrontal circuit through the primate basal ganglia
SN Haber, K Kunishio, M Mizobuchi, E Lynd-Balta
Journal of Neuroscience 1 July 1995, 15 (7) 4851-4867; DOI: 10.1523/JNEUROSCI.15-07-04851.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.
JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.