Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing

K Obrietan and AN van den Pol
Journal of Neuroscience 1 July 1995, 15 (7) 5065-5077; DOI: https://doi.org/10.1523/JNEUROSCI.15-07-05065.1995
K Obrietan
Department Biological Science, Stanford University, California 94305, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AN van den Pol
Department Biological Science, Stanford University, California 94305, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GABA is the primary inhibitory transmitter of the adult hypothalamus, synthesized by many neurons and found in 50% of the presynaptic boutons. GABA causes a decrease in Ca2+ in mature hypothalamic neurons in vitro by depressing cellular activity through opening Cl- channels. Despite the early expression of GABAA receptors in the embryonic hypothalamus (E15), the cellular function of GABA in the developing hypothalamus has received little attention. In the present study the role of GABA in modulating intracellular Ca2+ in developing hypothalamic neurons was studied with fura-2 digital imaging. GABA (0.5- 500 microM) applied to embryonic hypothalamic neurons elicited a dramatic and rapid increase in intracellular Ca2+ This Ca2+ rise could be completely blocked by the GABAA antagonist bicuculline (20 microM) and persisted in the presence of tetrodotoxin (1 microM). The Ca2+ elevation induced by GABA was greater than that of equimolar concentrations of the excitatory transmitter glutamate in early development. The number of E15 neurons that responded to GABA with a Ca2+ rise increased during the first few days of culture, reaching 78% after 4 d in vitro. The Ca2+ rise was 87% blocked by cadmium (100 microM) and 85% blocked by nimodipine (1 microM), indicating that the mechanism of Ca2+ increase was primarily via L-type voltage operated Ca2+ channels. Addition of bicuculline to synaptically coupled cultures caused a significant decrease in Ca2+ 4–10 d after culturing, indicating hypothalamic neurons were secreting GABA at an early age of development, and that sufficient GABA was released to elicit an increase in Ca2+. This effect was seen even after blocking all glutamatergic activity with glutamate receptor antagonists. In contrast, GABA elicited no Ca2+ rise in older neurons (> 18 d in vitro), and the action of bicuculline reversed and caused a large increase in Ca2+ in spontaneously active neurons. Similar findings were obtained in cultures enriched in GABAergic neurons from the suprachiasmatic nucleus. To determine if the Ca2+ stimulating role of GABA on developing neurons was restricted to the hypothalamus and a few other regions, or whether it might exist throughout the brain, we examined the Ca2+ responses in cultured olfactory bulb, cortex, medulla, striatum, thalamus, hippocampus, and colliculus. The majority (75%) of developing neurons from each region showed a Ca2+ rise in response to GABA. Together these data suggest that GABA elevates Ca2+ in developing, but not mature, neurons from the hypothalamus and all other brain regions examined.

Back to top

In this issue

The Journal of Neuroscience: 15 (7)
Journal of Neuroscience
Vol. 15, Issue 7
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing
K Obrietan, AN van den Pol
Journal of Neuroscience 1 July 1995, 15 (7) 5065-5077; DOI: 10.1523/JNEUROSCI.15-07-05065.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GABA neurotransmission in the hypothalamus: developmental reversal from Ca2+ elevating to depressing
K Obrietan, AN van den Pol
Journal of Neuroscience 1 July 1995, 15 (7) 5065-5077; DOI: 10.1523/JNEUROSCI.15-07-05065.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.