Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Response of monkey MST neurons to optic flow stimuli with shifted centers of motion

CJ Duffy and RH Wurtz
Journal of Neuroscience 1 July 1995, 15 (7) 5192-5208; DOI: https://doi.org/10.1523/JNEUROSCI.15-07-05192.1995
CJ Duffy
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RH Wurtz
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neurons in the dorsal region of the medial superior temporal area (MSTd) have previously been shown to respond to the expanding radial motion that occurs as an observer moves through the environment. In previous experiments, MSTd neurons were tested with radial and circular motion centered in the visual field. However, different directions of observer motion, relative to the direction of gaze, are accompanied by visual motion centered at different locations in the visual field. The present experiments investigated whether neurons that respond to radial and circular motion might respond differently when the center of motion was shifted to different regions of the visual field. About 90% of the 245 neurons studied responded differently when the center of motion was shifted away from the center of the field. The centers of motion preferred by each neuron were limited to one area of the visual field. All parts of the visual field were represented in the sample, with greater numbers of neurons preferring centers of motion closer to the center of the field. We hypothesize that each of the MSTd neurons has a center of motion field with a gradient of preferred centers of motion, and that there is an orderly arrangement of MSTd neurons with each region of the visual field being represented by a set of neurons. This arrangement creates the potential for graded responses from individual neurons for different directions of heading as an observer moves through the environment.

Back to top

In this issue

The Journal of Neuroscience: 15 (7)
Journal of Neuroscience
Vol. 15, Issue 7
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Response of monkey MST neurons to optic flow stimuli with shifted centers of motion
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Response of monkey MST neurons to optic flow stimuli with shifted centers of motion
CJ Duffy, RH Wurtz
Journal of Neuroscience 1 July 1995, 15 (7) 5192-5208; DOI: 10.1523/JNEUROSCI.15-07-05192.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Response of monkey MST neurons to optic flow stimuli with shifted centers of motion
CJ Duffy, RH Wurtz
Journal of Neuroscience 1 July 1995, 15 (7) 5192-5208; DOI: 10.1523/JNEUROSCI.15-07-05192.1995
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.