Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3

ME Hasselmo, E Schnell and E Barkai
Journal of Neuroscience 1 July 1995, 15 (7) 5249-5262; DOI: https://doi.org/10.1523/JNEUROSCI.15-07-05249.1995
ME Hasselmo
Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Schnell
Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Barkai
Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampal region CA3 contains strong recurrent excitation mediated by synapses of the longitudinal association fibers. These recurrent excitatory connections may play a dominant role in determining the information processing characteristics of this region. However, they result in feedback dynamics that may cause both runaway excitatory activity and runaway synaptic modification. Previous models of recurrent excitation have prevented unbounded activity using biologically unrealistic techniques. Here, the activation of feedback inhibition is shown to prevent unbounded activity, allowing stable activity states during recall and learning. In the model, cholinergic suppression of synaptic transmission at excitatory feedback synapses is shown to determine the extent to which activity depends upon new features of the afferent input versus components of previously stored representations. Experimental work in brain slice preparations of region CA3 demonstrates the cholinergic suppression of synaptic transmission in stratum radiatum, which contains synapses of the longitudinal association fibers.

Back to top

In this issue

The Journal of Neuroscience: 15 (7)
Journal of Neuroscience
Vol. 15, Issue 7
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3
ME Hasselmo, E Schnell, E Barkai
Journal of Neuroscience 1 July 1995, 15 (7) 5249-5262; DOI: 10.1523/JNEUROSCI.15-07-05249.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3
ME Hasselmo, E Schnell, E Barkai
Journal of Neuroscience 1 July 1995, 15 (7) 5249-5262; DOI: 10.1523/JNEUROSCI.15-07-05249.1995
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.