Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture

JM Schwalb, NM Boulis, MF Gu, J Winickoff, PS Jackson, N Irwin and LI Benowitz
Journal of Neuroscience 1 August 1995, 15 (8) 5514-5525; https://doi.org/10.1523/JNEUROSCI.15-08-05514.1995
JM Schwalb
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NM Boulis
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MF Gu
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Winickoff
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PS Jackson
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Irwin
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LI Benowitz
Department of Neurosurgery, Children's Hospital, Boston, Massachusetts 02115, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Unlike mammals, lower vertebrates can regenerate an injured optic nerve and other pathways of the CNS throughout life. We report here that in dissociated cell culture, goldfish retinal ganglion cells regenerate their axons in response to two factors derived from the sheath cells of the optic nerve. Axogenesis factor 1 (AF-1) is a small peptide (700–900 Da) that is inactivated by treatment with proteinase K but heat stable. A second factor, AF-2, is a polypeptide of ca 12 kDa. In the absence of these factors, dissociated retinal cells remained viable in serum-free, defined media for at least a week but showed little outgrowth, as visualized using the vital dye 5,6-carboxyfluorescein diacetate (5,6- CFDA). The addition of AF-1 induced up to 25% of cells in culture to extend processes > 75 microns in length by 6 d; AF-2 had a lesser but highly significant effect. To verify that neurite outgrowth was from retinal ganglion cells per se, we applied the lipophilic dye 4-Di-10- ASP to the optic tectum and allowed it to diffuse up the optic nerve for several days before culturing the retina. A far greater percentage of cells containing the dye showed axonal outgrowth than was observed from the overall cell population, indicating that ganglion cells are selective targets of the factors. The effects of AF-1 or AF-2 were not secondary to enhanced viability, since neither overall cell survival nor the number of retinal ganglion cells remaining in culture after 6 d was affected by the presence of the factors. The activity of AF-1 and AF-2 was not mimicked by several defined factors tested over a broad concentration range, for example, NGF, BDNF, NT-3, CNTF, taurine, retinoic acid, acidic or basic fibroblast growth factors. The concentration of AF-1 is considerably higher in CM than in optic nerve homogenates, suggesting that it is actively secreted; AF-2 has a similar concentration intra- and extracellularly. Insofar as AF-1 and AF-2 derive from cells of the optic nerve and act upon retinal ganglion cells, they are likely to be important in inducing optic nerve regeneration in vivo.

Back to top

In this issue

The Journal of Neuroscience: 15 (8)
Journal of Neuroscience
Vol. 15, Issue 8
1 Aug 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture
JM Schwalb, NM Boulis, MF Gu, J Winickoff, PS Jackson, N Irwin, LI Benowitz
Journal of Neuroscience 1 August 1995, 15 (8) 5514-5525; DOI: 10.1523/JNEUROSCI.15-08-05514.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture
JM Schwalb, NM Boulis, MF Gu, J Winickoff, PS Jackson, N Irwin, LI Benowitz
Journal of Neuroscience 1 August 1995, 15 (8) 5514-5525; DOI: 10.1523/JNEUROSCI.15-08-05514.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.