Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking

H Wolf and M Burrows
Journal of Neuroscience 1 August 1995, 15 (8) 5623-5636; https://doi.org/10.1523/JNEUROSCI.15-08-05623.1995
H Wolf
Fachbereich Biologie, Universitat Konstanz, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Burrows
Fachbereich Biologie, Universitat Konstanz, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mechanosensory neurons from a proprioceptor (the femoral chordotonal organ) signal the movements and positions of the femorotibial joint of a locust leg. Intracellular recordings from these neurons during walking show that their spikes are superimposed on a depolarizing synaptic input generated near their output terminals in the CNS. The depolarization consists of a rhythmic synaptic input at each step, and a sustained input that begins before walking commences. In different sensory neurons, which signal particular features of the movement, the rhythmic depolarization occurs at distinct times during either the swing or stance phases of the step cycle. The depolarizing input is timed to coincide with the greatest spike response of a sensory neuron. The input is associated with a conductance change, appears to reverse just above resting potential, and thus has similar properties to the presynaptic inhibition in these same neurons during imposed joint movements (Burrows and Laurent, 1993; Burrows and Matheson, 1994). Three sources could contribute to these inputs: (1) interactions between sensory neurons of the same receptor signaling the same movement, (2) signals from different receptors in the same leg and other legs, and (3) outputs of central neurons involved in generating walking. When the leg, whose movements the sensory neurons signal is removed, both the sustained and rhythmic synaptic inputs persist. Sensory neurons in isolated ganglia treated with pilocarpine are also depolarized in phase with a rhythmic pattern expressed in leg motor neurons, indicating that central neurons must contribute. The maintained synaptic input to the terminals means that the overall effectiveness of the sensory spikes in evoking EPSPs in postsynaptic neurons will be reduced during walking, and the rhythmic component means that the spikes from particular sensory neurons will be further reduced at particular phases of the step cycle that they signal best.

Back to top

In this issue

The Journal of Neuroscience: 15 (8)
Journal of Neuroscience
Vol. 15, Issue 8
1 Aug 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking
H Wolf, M Burrows
Journal of Neuroscience 1 August 1995, 15 (8) 5623-5636; DOI: 10.1523/JNEUROSCI.15-08-05623.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking
H Wolf, M Burrows
Journal of Neuroscience 1 August 1995, 15 (8) 5623-5636; DOI: 10.1523/JNEUROSCI.15-08-05623.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.