Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

The role of free radicals and p53 in neuron apoptosis in vivo

KA Wood and RJ Youle
Journal of Neuroscience 1 August 1995, 15 (8) 5851-5857; https://doi.org/10.1523/JNEUROSCI.15-08-05851.1995
KA Wood
Biochemistry Section, National Institutes of Health, Bethesda, Maryland 20892–1414, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RJ Youle
Biochemistry Section, National Institutes of Health, Bethesda, Maryland 20892–1414, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Apoptosis is a mechanism of cell death operative in the normal development and regulation of vertebrate tissues and organ cellularity. During the postnatal development of the mouse cerebellum, extensive granule neuron apoptosis occurs that may regulate the final granule cell to Purkinje cell stoichiometry observed in the adult. Cerebellar granule cells are highly sensitive to genotoxic agents such as gamma- irradiation and methylazoxymethanol during the first 2 weeks of postnatal development. We demonstrate that ionizing radiation induces extensive cerebellar granule cell death via apoptosis in vivo. In p53 null mice, however, the cerebellar granule cells do not undergo apoptosis in response to gamma-irradiation. In mice heterozygous for the p53 allele, the granule cells apoptosis is delayed, indicating an intermediate response. The developmental apoptosis of cerebellar granule cells, however, occurs similarly in wild-type and p53 null mice. Therefore, neurons undergo p53-dependent and p53-independent apoptosis, depending upon the initiating stimulus that triggers DNA fragmentation. In contrast to x-ray damage, the extensive death of cerebellar granule cells induced by methylazoxymethanol was found to be independent of the DNA fragmentation characteristic of apoptosis, and was also independent of expression of p53. Ablation of neuron progenitor cells with genotoxic agents may occur by p53-dependent apoptosis or by p53-independent mechanisms not associated with DNA fragmentation.

Back to top

In this issue

The Journal of Neuroscience: 15 (8)
Journal of Neuroscience
Vol. 15, Issue 8
1 Aug 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The role of free radicals and p53 in neuron apoptosis in vivo
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The role of free radicals and p53 in neuron apoptosis in vivo
KA Wood, RJ Youle
Journal of Neuroscience 1 August 1995, 15 (8) 5851-5857; DOI: 10.1523/JNEUROSCI.15-08-05851.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The role of free radicals and p53 in neuron apoptosis in vivo
KA Wood, RJ Youle
Journal of Neuroscience 1 August 1995, 15 (8) 5851-5857; DOI: 10.1523/JNEUROSCI.15-08-05851.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.