Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell

AE Pereda, TD Bell and DS Faber
Journal of Neuroscience 1 September 1995, 15 (9) 5943-5955; DOI: https://doi.org/10.1523/JNEUROSCI.15-09-05943.1995
AE Pereda
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TD Bell
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DS Faber
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Large myelinated club endings of the goldfish eighth nerve arise in the sacculus and establish mixed electrotonic and chemical synapses with the distal part of the Mauthner (M-) cell's lateral dendrite. We show here, using paired pre- and postsynaptic recordings, that depolarizing currents generated postsynaptically (specifically, the mixed synaptic potential produced by activation of part of the afferent population) can in some cases excite the presynaptic fibers and cause them to backfire. Strikingly, while in some systems junctional properties prevent the antidromic spread of depolarizing currents, physiological properties of these afferents and the gap junctions promote backfiring: the amplitude of the coupling potential recorded from an afferent fiber is voltage dependent, increasing with depolarization and being reduced during hyperpolarization. Two mechanisms, with different kinetics, underlie this voltage dependence. One, a nonlinear membrane property of the afferent fiber itself, enhances the coupling potential as the afferent membrane depolarizes. The second mechanism, which is less sensitive to voltage and is symmetric about the resting potential, most likely represents voltage dependence of the junctional membrane. Additionally, we also show retrograde diffusion of low molecular weight substances, as the fluorescent dye Lucifer yellow and the tracer Neurobiotin were found in the terminals of afferent fibers after being injected postsynaptically into the M-cell. These results suggest that the gap junctions in these primary afferents are not only involved in fast anterograde synaptic transmission but also provide the substrate for a retrograde intercellular communication. The electrical coupling may modify the input-output relation between eighth nerve afferents and the lateral dendrite by synchronizing the population of already active fibers and by promoting the recruitment of new fibers via backfiring, such that weaker inputs produce relatively larger responses.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell
AE Pereda, TD Bell, DS Faber
Journal of Neuroscience 1 September 1995, 15 (9) 5943-5955; DOI: 10.1523/JNEUROSCI.15-09-05943.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell
AE Pereda, TD Bell, DS Faber
Journal of Neuroscience 1 September 1995, 15 (9) 5943-5955; DOI: 10.1523/JNEUROSCI.15-09-05943.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.