Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey

F Eblen and AM Graybiel
Journal of Neuroscience 1 September 1995, 15 (9) 5999-6013; https://doi.org/10.1523/JNEUROSCI.15-09-05999.1995
F Eblen
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AM Graybiel
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The prefrontal cortex is made up of neocortical areas thought to mediate aspects of the temporal and spatial organization of behavior. One of the prime output targets of the prefrontal cortex is the striatum, which is thought to operate in series with the prefrontal cortex in some neural computations. We have analyzed this prefronto- striatal projection in cynomolgus monkeys by combining anterograde neuronal tract tracing methods with neurochemical markers for the striosome and matrix compartments of the striatum. Our results single out two parts of the frontal cortex as projecting densely to the striosome compartment of the striatum: the posterior orbitofrontal/anterior insular cortex and the mediofrontal prelimbic/anterior cingulate cortex. These areas jointly innervated striosomes in the anterior and ventromedial striatum, mainly in the caudate nucleus. Striosomes in the dorsolateral striatum were never labeled. Thus, the anatomical subsystem defined by striosome affiliation includes three cortical and striatal regions that, in humans, have been implicated in obsessive-compulsive disorder. Nearly all of the remaining parts of the prefrontal cortex studied projected preferentially to the matrix compartment. Most of these prefrontal inputs were also patchy, and many of the patches (matrisomes) were selectively paired with nearby striosomes. The highly fractionated organization of prefrontal inputs to striosomes and matrisomes could form a template for computational networks in the striatum that redistribute prefrontal corticostriatal inputs to serve in context- dependent behavioral planning.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey
F Eblen, AM Graybiel
Journal of Neuroscience 1 September 1995, 15 (9) 5999-6013; DOI: 10.1523/JNEUROSCI.15-09-05999.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey
F Eblen, AM Graybiel
Journal of Neuroscience 1 September 1995, 15 (9) 5999-6013; DOI: 10.1523/JNEUROSCI.15-09-05999.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.