Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Maintained L-type Ca2+ channel activity in excised patches of PTX- treated granule cells of the cerebellum

RC Lambert and A Feltz
Journal of Neuroscience 1 September 1995, 15 (9) 6014-6022; DOI: https://doi.org/10.1523/JNEUROSCI.15-09-06014.1995
RC Lambert
Laboratoire de Neurobiologie Cellulaire, UPR CNRS 9009, l'Universite Louis Pasteur, Strasbourg, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Feltz
Laboratoire de Neurobiologie Cellulaire, UPR CNRS 9009, l'Universite Louis Pasteur, Strasbourg, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Activity of high-threshold voltage activated neuronal Ca2+ channels, including dihydropyridine-sensitive (L-type) channels, rapidly disappears during cell dialysis in whole-cell recording conditions or after excision of a patch. To date, this phenomenom has been mainly related to phosphatase or protease activity. On the other hand, it has been suggested that Ca2+ channels may be regulated by G-proteins. Therefore, disruption of this regulatory pathway may also be involved directly or indirectly in the rundown process. Here, we show that treatment of cultured cerebellar granule cells with pertussis toxin (PTX) increases to 70% the probability for excising patches that display L-type Ca2+ channels activity in the inside-out recording configuration. Quantitative study indicates that, except a half decrease in the open probability, most features of the channel activity are retained after patch excision with minor modifications. The characteristics of the channel activity did not change with time during at least the first 9 min of the inside-out configuration. In addition, comparison of unitary currents recorded in the cell-attached, configuration on treated and nontreated cells demonstrates that the PTX treatment slows the activation kinetics of the current and increases the duration of channel openings evoked at -20 mV but not at 0 mV depolarizing potential. These data suggest that L-type Ca2+ channel activity are under a tonic regulation of a PTX-sensitive mechanism, which is implied in the run-down process.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Maintained L-type Ca2+ channel activity in excised patches of PTX- treated granule cells of the cerebellum
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Maintained L-type Ca2+ channel activity in excised patches of PTX- treated granule cells of the cerebellum
RC Lambert, A Feltz
Journal of Neuroscience 1 September 1995, 15 (9) 6014-6022; DOI: 10.1523/JNEUROSCI.15-09-06014.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Maintained L-type Ca2+ channel activity in excised patches of PTX- treated granule cells of the cerebellum
RC Lambert, A Feltz
Journal of Neuroscience 1 September 1995, 15 (9) 6014-6022; DOI: 10.1523/JNEUROSCI.15-09-06014.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.