Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2

PS Katz and WN Frost
Journal of Neuroscience 1 September 1995, 15 (9) 6035-6045; DOI: https://doi.org/10.1523/JNEUROSCI.15-09-06035.1995
PS Katz
Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77030, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WN Frost
Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77030, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Heterosynaptic enhancement of transmitter release is potentially very important for neuronal computation, yet, to our knowledge, no prior study has shown that stimulation of one neuron directly enhances release from an interneuron. Here, we demonstrate that in the marine mollusk Tritonia diomedea, the serotonergic dorsal swim interneurons (DSIs) heterosynaptically increase the amount of transmitter released from another interneuron, C2. Stimulation of a single DSI at physiological firing frequencies increases the size of synaptic potentials evoked by C2. This increase in synaptic efficacy is correlated with an increase in homosynaptic paired-pulse facilitation by C2. Thus, it is likely to be due to an enhancement of transmitter release from C2, rather than a postsynaptic action on the followers of C2. This is further supported by the fact that DSI stimulation enhances the strengths of all chemical synapses made by C2 within the swim network, regardless of their sign. Furthermore, DSI enhances the amplitude of C2 synaptic potentials recorded in neurons that DSI itself does not synapse with. Finally, DSI differentially modulates different synaptic inputs to the same postsynaptic target; while increasing C2- evoked EPSPs it simultaneously decreases the size of EPSPs evoked by other DSIs. The heterosynaptic facilitation of C2 synaptic potentials by DSI is not caused by a simple depolarization of C2, but may be a direct action on the transmitter release mechanism. This neuromodulatory effect, which is intrinsic to the circuitry of the central pattern generator for escape swimming in Tritonia, may be important for self-reconfiguration of the swim motor network.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2
PS Katz, WN Frost
Journal of Neuroscience 1 September 1995, 15 (9) 6035-6045; DOI: 10.1523/JNEUROSCI.15-09-06035.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2
PS Katz, WN Frost
Journal of Neuroscience 1 September 1995, 15 (9) 6035-6045; DOI: 10.1523/JNEUROSCI.15-09-06035.1995
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.