Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles

ML Gielow, GG Gu and S Singh
Journal of Neuroscience 1 September 1995, 15 (9) 6085-6093; https://doi.org/10.1523/JNEUROSCI.15-09-06085.1995
ML Gielow
Department of Biochemical Pharmacology, State University of New York at Buffalo 14260, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GG Gu
Department of Biochemical Pharmacology, State University of New York at Buffalo 14260, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Singh
Department of Biochemical Pharmacology, State University of New York at Buffalo 14260, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage-dependent calcium channels play a role in many cellular phenomena. Very little is known about Ca2+ channels in Drosophila, especially those in muscles. Existing literature on neuronal Ca2+ channels of Drosophila suggests that their pharmacology may be distinct from that of vertebrate Ca2+ channels. This raises questions on the pharmacology and diversity of Ca2+ channels in Drosophila muscles. Here we show that the Ca2+ channel current in the body-wall muscles of Drosophila larvae consists of two main components. One component is sensitive to 1,4-dihydropyridines and diltiazem, which block vertebrate L-type Ca2+ channels. The second component is sensitive to amiloride, which blocks vertebrate T-type Ca2+ channels. In contrast to Drosophila brain membrane preparations in which a majority of the Ca2+ channels are phenylalkylamine-sensitive but dihydropyridine-insensitive, the major current in the muscles was dihydropyridine-sensitive but relatively less sensitive to verapamil. This might indicate an underlying tissue specific distribution of distinct subtypes of dihydropyridine/phenylalkylamine-sensitive Ca2+ channels in Drosophila. Low verapamil sensitivity of the dihydropyridine-sensitive current of Drosophila muscles also set it apart from the vertebrate L-type channels which are sensitive to 1,4-dihydropyridines, benzothiazepines as well as phenylalkylamines. The dihydropyridine-sensitive current in Drosophila muscles activated in a similar voltage range as the vertebrate L-type current. As with the vertebrate current, blockade by dihydropyridines was voltage dependent.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles
ML Gielow, GG Gu, S Singh
Journal of Neuroscience 1 September 1995, 15 (9) 6085-6093; DOI: 10.1523/JNEUROSCI.15-09-06085.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles
ML Gielow, GG Gu, S Singh
Journal of Neuroscience 1 September 1995, 15 (9) 6085-6093; DOI: 10.1523/JNEUROSCI.15-09-06085.1995
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.