Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death

RJ Mark, K Hensley, DA Butterfield and MP Mattson
Journal of Neuroscience 1 September 1995, 15 (9) 6239-6249; DOI: https://doi.org/10.1523/JNEUROSCI.15-09-06239.1995
RJ Mark
Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Hensley
Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DA Butterfield
Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MP Mattson
Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The amyloid beta-peptide (A beta) that accumulates as insoluble plaques in the brain in Alzheimer's disease can be directly neurotoxic and can increase neuronal vulnerability to excitotoxic insults. The mechanism of A beta toxicity is unclear but is believed to involve generation of reactive oxygen species (ROS) and loss of calcium homeostasis. We now report that exposure of cultured rat hippocampal neurons to A beta 1–40 or A beta 25–35 causes a selective reduction in Na+/K(+)-ATPase activity which precedes loss of calcium homeostasis and cell degeneration. Na+/K(+)-ATPase activity was reduced within 30 min of exposure to A beta 25–35 and declined to less than 40% of basal level by 3 hr. A beta did not impair other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. Experiments with ouabain, a specific inhibitor of the Na+/K(+)-ATPase, demonstrated that impairment of this enzyme was sufficient to induce an elevation of [Ca2+]i and neuronal injury. Impairment of Na+/K(+)-ATPase activity appeared to be causally involved in the elevation of [Ca2+]i and neurotoxicity since suppression of Na+ influx significantly reduced A beta- and ouabain-induced [Ca2+]i elevation and neuronal death. Neuronal degeneration induced by ouabain appeared to be of an apoptotic form as indicated by nuclear condensation and DNA fragmentation. The antioxidant free radical scavengers vitamin E and propylgallate significantly attenuated A beta- induced impairment of Na+/K(+)-ATPase activity, elevation of [Ca2+]i and neurotoxicity, suggesting a role for ROS. Finally, exposure of synaptosomes from postmortem human hippocampus to A beta resulted in a significant and specific reduction in Na+/K(+)-ATPase and Ca(2+)-ATPase activities, without affecting other Mg(2+)-dependent ATPase activities or Na+/Ca2+ exchange. These data suggest that impairment of ion-motive ATPases may play a role in the pathogenesis of neuronal injury in Alzheimer's disease.

Back to top

In this issue

The Journal of Neuroscience: 15 (9)
Journal of Neuroscience
Vol. 15, Issue 9
1 Sep 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death
RJ Mark, K Hensley, DA Butterfield, MP Mattson
Journal of Neuroscience 1 September 1995, 15 (9) 6239-6249; DOI: 10.1523/JNEUROSCI.15-09-06239.1995

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death
RJ Mark, K Hensley, DA Butterfield, MP Mattson
Journal of Neuroscience 1 September 1995, 15 (9) 6239-6249; DOI: 10.1523/JNEUROSCI.15-09-06239.1995
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.