Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells

Z Nusser, W Sieghart, FA Stephenson and P Somogyi
Journal of Neuroscience 1 January 1996, 16 (1) 103-114; DOI: https://doi.org/10.1523/JNEUROSCI.16-01-00103.1996
Z Nusser
Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Sieghart
Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FA Stephenson
Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Somogyi
Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, United Kingdom.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although three distinct subunits seem to be sufficient to form a functional pentameric GABAA receptor channel, cerebellar granule cells express nRNA for nine subunits. They receive GABAergic input from a relatively homogenous population of Golgi cells. It is not known whether all subunits are distributed similarly on the surface of granule cells or whether some of them have differential subcellular distribution resulting in distinct types of synaptic and/or extrasynaptic channels. Antibodies to different parts of the alpha 6 and alpha 1 subunits of the GABAA receptor and electron microscopic immunogold localization were used to determine the precise subcellular distribution of these subunits in relation to specific synaptic inputs. Both subunits were present in the extrasynaptic dendritic and somatic membranes at lower densities than in synaptic junctions. The alpha 6 and alpha 1 subunits were colocalized in many GABAergic Golgi synapses, demonstrating that both subunits are involved in synaptic transmission in the same synapse. Synapses immunopositive for only one of the alpha subunits were also found. The alpha 6, but not the alpha 1, subunit was also concentrated in glutamatergic mossy fiber synapses, indicating that the alpha 6 subunit may have several roles depending on its different locations. The results demonstrate a partially differential synaptic targeting of two distinct GABAA receptor subunits on the surface of the same type of neuron.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells
Z Nusser, W Sieghart, FA Stephenson, P Somogyi
Journal of Neuroscience 1 January 1996, 16 (1) 103-114; DOI: 10.1523/JNEUROSCI.16-01-00103.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells
Z Nusser, W Sieghart, FA Stephenson, P Somogyi
Journal of Neuroscience 1 January 1996, 16 (1) 103-114; DOI: 10.1523/JNEUROSCI.16-01-00103.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.