Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons

G Dayanithi and L Tapia-Arancibia
Journal of Neuroscience 1 January 1996, 16 (1) 130-136; DOI: https://doi.org/10.1523/JNEUROSCI.16-01-00130.1996
G Dayanithi
Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Universite Montpellier II, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Tapia-Arancibia
Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Universite Montpellier II, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study examines the early effects of 3 alpha-hydroxy-5 alpha- pregnan-20-one (allopregnanolone on cytosolic free calcium concentration ([Ca2+]i in primary cultures of fetal rat hypothalamic neurons. Microspectrofluorimetry of fluorescent Ca2+(-)sensitive indicator Fura-2 was used to quantify these changes. Allopregnanolone (1 pM to 100 nM) increased [Ca2+]i within 2–3 sec, in a dose dependent manner, with an EC50 of 10 +/- 4 nM. The stimulatory effect of allopregnanolone was attributable principally to a Ca2+ influx, as shown by the strong inhibition of external Ca2+ removal or by the calcium channel blocker nifedipine. The effect was stereospecific because the allopregnanolone isomer 3 beta-hydroxy-5 alpha-pregnan-20- one had no effect on [Ca2+]i. Among two other steroids examined, progesterone had no effect on [Ca2+]i, but 17 beta-estradiol evoked a rise in [Ca2+]i, although to a lesser extent than allopregnanolone. The allopregnanolone-induced [Ca2+]i rise was inhibited by picrotoxin and bicuculline but was unaffected by tetrodotoxin or by pretreatment of neurons with pertussis toxin. These results are consistent with a membrane site of action for allopregnanolone associated with GABAA receptors, leading to rapid changes in [Ca2+]i in fetal rat hypothalamic neurons.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons
G Dayanithi, L Tapia-Arancibia
Journal of Neuroscience 1 January 1996, 16 (1) 130-136; DOI: 10.1523/JNEUROSCI.16-01-00130.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons
G Dayanithi, L Tapia-Arancibia
Journal of Neuroscience 1 January 1996, 16 (1) 130-136; DOI: 10.1523/JNEUROSCI.16-01-00130.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.