Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

MN20, a D2 cyclin, is transiently expressed in selected neural populations during embryogenesis

ME Ross, ML Carter and JH Lee
Journal of Neuroscience 1 January 1996, 16 (1) 210-219; DOI: https://doi.org/10.1523/JNEUROSCI.16-01-00210.1996
ME Ross
Department of Neurology, University of Minnesota, Minneapolis 55455, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ML Carter
Department of Neurology, University of Minnesota, Minneapolis 55455, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Lee
Department of Neurology, University of Minnesota, Minneapolis 55455, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although the regulation of proliferation and differentiation during brain development has long been considered to be interrelated, the mechanisms that coordinate the control of cell division and histogenesis are poorly understood. The cell cycle is a dynamic process that is governed by the concerted action of numerous cell cycle regulatory proteins in response to signals both intrinsic and extrinsic to the cell. Thus, proteins that regulate the cell cycle are well suited to provide a link between processes that control neuroblast proliferation and differentiation. We reported previously the isolation from brain of a message form of D2 cyclin, one of several cyclin proteins known to promote the progression from G1 to S phase. This MN20/D2 cyclin mRNA is expressed in highly restricted neural populations at embryonic (E) day 15 and postnatal (P) day 6 in the mouse. To gain insight into the role(s) this cyclin may serve in brain formation, the spatial and temporal pattern of MN20/D2 cyclin expression was examined by in situ hybridization at 48 hr intervals from E10.5 to P8. MN20 mRNA was detected in developing cerebellum, dorsal mesencephalon, cerebral cortex, and epithalamus, but not hippocampus, striatum, or thalamus. Comparison with 5-bromodeoxyuridine labeling of cells in S phase indicated that MN20 expression in embryonic cerebellum and cerebral cortex was most pronounced in young neurons that recently had become postmitotic. Although expressed in other embryonic cerebellar neurons, MN20 was detected in granule precursors only postnatally, after their migration from the rhombic lip to the external germinal layer. This indicates that MN20/D2 cyclin is induced in cerebellar granule precursors as they become competent to differentiate. The spatial distribution of MN20 expression in the developing brain suggests that regional differences in cell cycle regulation depend in part on the selective use of cyclin proteins. Moreover, detection of MN20 mRNA in postmitotic neural cells indicates that cyclin D2 expression has effects beyond promoting cell cycle progression and may also have a role in the response of the neural precursor to terminal differentiation signals as the cells exits from proliferation.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
MN20, a D2 cyclin, is transiently expressed in selected neural populations during embryogenesis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
MN20, a D2 cyclin, is transiently expressed in selected neural populations during embryogenesis
ME Ross, ML Carter, JH Lee
Journal of Neuroscience 1 January 1996, 16 (1) 210-219; DOI: 10.1523/JNEUROSCI.16-01-00210.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
MN20, a D2 cyclin, is transiently expressed in selected neural populations during embryogenesis
ME Ross, ML Carter, JH Lee
Journal of Neuroscience 1 January 1996, 16 (1) 210-219; DOI: 10.1523/JNEUROSCI.16-01-00210.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.