Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity

DM Senseman
Journal of Neuroscience 1 January 1996, 16 (1) 313-324; DOI: https://doi.org/10.1523/JNEUROSCI.16-01-00313.1996
DM Senseman
Division of Life Sciences, University of Texas at San Antonio 78249, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fast, multiple-site optical recording and video imaging techniques were combined to visualize the olfactory processing stream as it flowed through rat olfactory bulb slices stained with the voltage-sensitive dye RH155. A 464 element photodiode detector array was used to record the voltage-sensitive dye signals. Focal electrical stimulation of the olfactory nerve layer evoked relatively large optical responses in the olfactory nerve and glomerular layers but only small responses within the external plexiform layer. With paired-pulse stimulation, glomerular attenuation was evident in signals recorded from the glomerular and external plexiform layers but not from the olfactory nerve layer. At very high recording speeds ( < 0.2 msec/frame), the presynaptic component of the olfactory processing stream could be followed as it flowed through the olfactory nerve layer and into the glomerular layer, where its amplitude rapidly declined. This decline was followed by a reciprocal rise in a postsynaptic depolarization that was largely restricted to the glomerular layer. Spatiotemporal interactions between overlapping afferent streams within the glomerular layer were observed and partially characterized. The optically recorded glomerular layer response was largely resistant to bath application of GABAA receptor antagonists but was sensitive to manipulations of external chloride concentration and to bath application of a stilbene derivative, 4- acetamido-4′isothiocyanatostilbene-2,2′-disulfonic acid known to block Cl- conductances. It is suggested the the voltage-sensitive dye signals recorded from the glomerular layer reflect activity in periglomerular cells and that Cl- efflux through non-GABAA chloride channels contributes to the postsynaptic depolarization of these cells after olfactory nerve stimulation.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity
DM Senseman
Journal of Neuroscience 1 January 1996, 16 (1) 313-324; DOI: 10.1523/JNEUROSCI.16-01-00313.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity
DM Senseman
Journal of Neuroscience 1 January 1996, 16 (1) 313-324; DOI: 10.1523/JNEUROSCI.16-01-00313.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.