Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo

C Doyle, C Holscher, MJ Rowan and R Anwyl
Journal of Neuroscience 1 January 1996, 16 (1) 418-424; DOI: https://doi.org/10.1523/JNEUROSCI.16-01-00418.1996
C Doyle
Department of Physiology, Trinity College, Dublin 2, Ireland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Holscher
Department of Physiology, Trinity College, Dublin 2, Ireland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MJ Rowan
Department of Physiology, Trinity College, Dublin 2, Ireland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Anwyl
Department of Physiology, Trinity College, Dublin 2, Ireland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The membrane-permeant gas NO is a putative intercellular messenger that has been proposed on the basis of previous in vitro studies to be involved in synaptic plasticity, especially the induction of long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and cortex. In the present study, the role of NO in synaptic plasticity has been investigated in vivo. In particular, the action of the novel and selective neuronal NO synthase (nNOS) inhibitor 7-nitro-indazole (7-NI) has been investigated on the induction of LTP and depotentiation (DP) of field EPSPs in CA1 of the hippocampus in vivo. Unlike previously studied nonselective NOS inhibitors, 7-NI does not increase arterial blood pressure. In vehicle-injected rats, high- frequency stimulation consisting of a series of trains at 200 Hz induced LTP. However, LTP induction was strongly inhibited in 7-NI (30 mg/kg, i.p.)-treated animals. The inhibitory effect of 7-NI on the induction of LTP was prevented by pretreatment with L-arginine, the substrate amino acid used by NOS. In control animals, low-frequency stimulation consisting of 900 stimuli at 10 Hz induced DP of previously established LTP, whereas in 7-HI-treated animals only a short-term depression was induced. This effect of 7-NI also was prevented by D- arginine. The LTP and DP induced in control animals in this study were NMDA receptor-dependent, the NMDA receptor antagonist 3-(R,S)-2- carboxypiperazin-4-yl-propyl-1- phosphonic acid inhibiting the induction of both forms of synaptic plasticity. The present experiments are the first to demonstrate that an NOS inhibitor blocks the induction of the synaptic component of LTP and DP in vivo and, therefore, these results strengthen evidence that the production of NO is necessary for the induction of LTP and DP.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo
C Doyle, C Holscher, MJ Rowan, R Anwyl
Journal of Neuroscience 1 January 1996, 16 (1) 418-424; DOI: 10.1523/JNEUROSCI.16-01-00418.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo
C Doyle, C Holscher, MJ Rowan, R Anwyl
Journal of Neuroscience 1 January 1996, 16 (1) 418-424; DOI: 10.1523/JNEUROSCI.16-01-00418.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.