Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Regulation of intracellular Cl- levels by Na(+)-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons

J Rohrbough and NC Spitzer
Journal of Neuroscience 1 January 1996, 16 (1) 82-91; https://doi.org/10.1523/JNEUROSCI.16-01-00082.1996
J Rohrbough
Department of Biology, University of California at San Diego, La Jolla 92093–0357, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NC Spitzer
Department of Biology, University of California at San Diego, La Jolla 92093–0357, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rohon-Beard (RB) spinal neurons of Xenopus larvae are depolarized by GABA. To study the mechanisms underlying this distinctive response, intracellular and patch-clamp recordings were made from RB neurons in situ. The intracellularly recorded GABA reversal potential (EREV) was near -30 mV in normal saline and was approximately 25 mV more negative in Na(+)-free saline. Whole-cell recordings from RB neurons and from neighboring dorsolateral interneurons (DLi) revealed that GABA responses of both cells were mediated by GABAA receptors. Currents elicited by GABA were mimicked by muscimol and reversibly blocked by bicuculline, and EREV shifted with changes in Cl- concentration ([Cl]) in agreement with Cl- selectivity. In perforated patch recordings, EREV for RB cells was significantly more positive than for DLi cells (-38 vs -63 mV), indicating that intact RB cells maintain higher levels of intracellular Cl-. Replacement of external Na+ or exposure to the Cl- transport inhibitor bumetanide (100 microM) shifted RB cell EREV to move negative values, consistent with Na+(-)dependent Cl cotransport contributing to higher internal [Cl]. In contrast, these treatments did not change DLi cell EREV. The results indicate that a Na+(-)dependent Cl- transport mechanism underlies GABAA receptor-mediated depolarizing Cl- conductances in RB neurons. Thus, both inhibitory and excitatory GABA responses appear to be present during the same developmental period in vivo. GABA may stimulate Ca2+ influx in RB neurons because the intracellular GABA EREV is above the threshold for low voltage- activated Ca2+ channels.

Back to top

In this issue

The Journal of Neuroscience: 16 (1)
Journal of Neuroscience
Vol. 16, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of intracellular Cl- levels by Na(+)-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Regulation of intracellular Cl- levels by Na(+)-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons
J Rohrbough, NC Spitzer
Journal of Neuroscience 1 January 1996, 16 (1) 82-91; DOI: 10.1523/JNEUROSCI.16-01-00082.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Regulation of intracellular Cl- levels by Na(+)-dependent Cl- cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons
J Rohrbough, NC Spitzer
Journal of Neuroscience 1 January 1996, 16 (1) 82-91; DOI: 10.1523/JNEUROSCI.16-01-00082.1996
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.