Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation

Pankaj Sah and John M. Bekkers
Journal of Neuroscience 1 August 1996, 16 (15) 4537-4542; DOI: https://doi.org/10.1523/JNEUROSCI.16-15-04537.1996
Pankaj Sah
1Neuroscience Group and the Discipline of Physiology, University of Newcastle, New South Wales, Australia, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John M. Bekkers
2Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Trains of action potentials in hippocampal pyramidal neurons are followed by a prolonged afterhyperpolarization (AHP) lasting several seconds, which is attributable to the activation of a slow calcium-activated potassium current (sIAHP). Here we examine the location of sIAHP on CA1 pyramidal neurons by comparing it with two GABAergic inhibitory postsynaptic currents (IPSCs) with known somatic and dendritic locations. Whole-cell patch-clamp recordings were made from CA1 pyramidal neurons in acute hippocampal slices. Stepping the membrane potential at the peak of sIAHP produced a relaxation (“switchoff”) of the AHP current with a time constant of 7.4 ± 0.4 msec (mean ± SEM). The switchoff time constants for somatic and dendritic GABAA IPSCs were 3.5 ± 0.5 msec and 8.8 ± 0.3 msec, respectively. This data, together with cable modeling, indicates that active sIAHP channels are distributed over the proximal dendrites within ∼200 μm of the soma. Excitatory postsynaptic potentials (EPSPs) evoked in stratum (s.) radiatum had their amplitudes shunted more by the AHP than did EPSPs evoked in s. oriens, suggesting that active AHP channels are restricted to the apical dendritic tree. Blockade of the AHP during a tetanus, which in control conditions elicited a decremental short-term potentiation (STP), converted STP to long-term potentiation (LTP). Thus, activation of the AHP increases the threshold for induction of LTP. These results suggest that in addition to its established role in spike frequency adaptation, the AHP works as an adjustable gain control, variably hyperpolarizing and shunting synaptic potentials arising in the apical dendrites.

  • AHP
  • cable analysis
  • dendrite
  • long-term potentiation
  • potassium channel
  • short-term potentiation
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 16 (15)
Journal of Neuroscience
Vol. 16, Issue 15
1 Aug 1996
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation
Pankaj Sah, John M. Bekkers
Journal of Neuroscience 1 August 1996, 16 (15) 4537-4542; DOI: 10.1523/JNEUROSCI.16-15-04537.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation
Pankaj Sah, John M. Bekkers
Journal of Neuroscience 1 August 1996, 16 (15) 4537-4542; DOI: 10.1523/JNEUROSCI.16-15-04537.1996
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • AHP
  • cable analysis
  • dendrite
  • long-term potentiation
  • potassium channel
  • short-term potentiation

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.