Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat

JE Pierce, JQ Trojanowski, DI Graham, DH Smith and TK McIntosh
Journal of Neuroscience 1 February 1996, 16 (3) 1083-1090; https://doi.org/10.1523/JNEUROSCI.16-03-01083.1996
JE Pierce
Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JQ Trojanowski
Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DI Graham
Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DH Smith
Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TK McIntosh
Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent reports suggest a relationship between traumatic brain injury and the precocious development of neurodegenerative cascades, including diffuse deposits of beta-amyloid peptides (A beta) in the injured brain. Because the lateral fluid-percussion (FP) model of experimental brain injury produces clinically relevant neuropathological sequelae in the rat brain, we used this model together with a series of antibodies specific for amyloid precursor proteins (APPs), APP-like proteins (APLPs), or A beta to identify acute neurodegenerative changes after brain trauma. Male Sprague-Dawley rats were anesthetized and subjected to lateral FP brain injury of moderate to high severity. At 1 hr, 2 hr, 48 hr, 1 week, or 2 weeks after injury, animals were killed and their brains were removed for immunohistochemical analysis. APP/APLP immunoreactivity increased in specific brain regions as early as 1 hr after injury and persisted for at least 2 weeks. Axons in the thalamus and subcortical white matter showed the greatest APP/APLP accumulation. Injured cortex, striatum, cingulum, and hippocampus also demonstrated significant axonal accumulations of APP/APLP. Accumulation of APP/APLPs occurred primarily ipsilateral to the injury, although bilateral changes were observed in some brain regions. No deposition of A beta was observed in any brain region at any time point examined. These results demonstrate a pattern of widespread axonal pathology after lateral FP brain injury in the rat, characterized by intra-axonal accumulations of APP/APLP immunoreactivity in the absence of plaque- like deposits of A beta in the traumatized brain.

Back to top

In this issue

The Journal of Neuroscience: 16 (3)
Journal of Neuroscience
Vol. 16, Issue 3
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat
JE Pierce, JQ Trojanowski, DI Graham, DH Smith, TK McIntosh
Journal of Neuroscience 1 February 1996, 16 (3) 1083-1090; DOI: 10.1523/JNEUROSCI.16-03-01083.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat
JE Pierce, JQ Trojanowski, DI Graham, DH Smith, TK McIntosh
Journal of Neuroscience 1 February 1996, 16 (3) 1083-1090; DOI: 10.1523/JNEUROSCI.16-03-01083.1996
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.