Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Postnatal development of membrane properties of layer I neurons in rat neocortex

FM Zhou and JJ Hablitz
Journal of Neuroscience 1 February 1996, 16 (3) 1131-1139; DOI: https://doi.org/10.1523/JNEUROSCI.16-03-01131.1996
FM Zhou
Neurobiology Research Center, University of Alabama at Birmingham 35294, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JJ Hablitz
Neurobiology Research Center, University of Alabama at Birmingham 35294, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Using whole-cell patch-clamp techniques in brain slices, we studied the postnatal development of electrophysiological properties of rat neocortical layer I neurons during the first three weeks of postnatal life. Neurons, including Cajal-Retzius cells, were visualized under Nomarski optics before recording. In the first postnatal week, all layer I neurons, including Cajal-Retzius cells, had low resting membrane potentials (-40 to -55 mV), high input resistances (1–5 G omega), and long membrane time constants (80–130 msec). Action potentials (APs) of layer I neurons early in postnatal development were lower in amplitude and longer in duration. The threshold for APs also was more depolarized than in older neurons. A medium after- hyperpolarization already was present at postnatal day 0 (PN0), but fast afterhyperpolarizations were not seen until PN10. At all postnatal ages, layer I neurons were capable of repetitive firing, displayed little or no frequency adaptation, and did not display slow afterhyperpolarizations. Early in development, layer I neurons had a prominent hyperpolarization-activation depolarizing sag that decreased with age. These results suggest that the membrane properties of rat neocortical layer I neurons mature rapidly during the first two postnatal weeks. Cajal-Retzius cells had electrical properties similar to other layer I neurons and did not show an earlier maturation of membrane properties.

Back to top

In this issue

The Journal of Neuroscience: 16 (3)
Journal of Neuroscience
Vol. 16, Issue 3
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Postnatal development of membrane properties of layer I neurons in rat neocortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Postnatal development of membrane properties of layer I neurons in rat neocortex
FM Zhou, JJ Hablitz
Journal of Neuroscience 1 February 1996, 16 (3) 1131-1139; DOI: 10.1523/JNEUROSCI.16-03-01131.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Postnatal development of membrane properties of layer I neurons in rat neocortex
FM Zhou, JJ Hablitz
Journal of Neuroscience 1 February 1996, 16 (3) 1131-1139; DOI: 10.1523/JNEUROSCI.16-03-01131.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.