Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient

JQ Zheng, JJ Wan and MM Poo
Journal of Neuroscience 1 February 1996, 16 (3) 1140-1149; DOI: https://doi.org/10.1523/JNEUROSCI.16-03-01140.1996
JQ Zheng
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JJ Wan
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MM Poo
Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pathfinding of growing neurites depends on turning of the growth cone in response to extracellular cues. Motile filopodia of the growth cone are known to be critical for mediating contact-dependent guidance of the growth cone. However, whether filopodia also play an essential role in growth cone turning response induced by a diffusible chemotropic substance is unclear. Growth cones of cultured Xenopus spinal neurons exhibited chemotropic turning responses in a gradient of glutamate within a limited range of concentrations. This turning response depends on the activation of the NMDA subtype of glutamate receptors and requires the presence of extracellular Ca2+. Time-lapse differential interference contrast microscopy with quantitative analysis of filopodia dynamics showed a close correlation between an increased number of filopodia on the side of the growth cone facing the glutamate source and the turning. Such filopodia asymmetry was observed within minutes after the onset of the glutamate gradient, before any detectable turning of the growth cone. In Ca(2+)-free medium, no filopodia asymmetry was induced by the glutamate gradient, and no growth cone turning was observed. Furthermore, elimination of filopodia with a low concentration of cytochalasin B completely abolished the turning response without substantially affecting neurite extension. Thus, filopodia may be required for chemotropic guidance of the growth cone, and an asymmetry in filopodia distribution may be an early cellular event responsible for determining the direction the growth cone advances.

Back to top

In this issue

The Journal of Neuroscience: 16 (3)
Journal of Neuroscience
Vol. 16, Issue 3
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient
JQ Zheng, JJ Wan, MM Poo
Journal of Neuroscience 1 February 1996, 16 (3) 1140-1149; DOI: 10.1523/JNEUROSCI.16-03-01140.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient
JQ Zheng, JJ Wan, MM Poo
Journal of Neuroscience 1 February 1996, 16 (3) 1140-1149; DOI: 10.1523/JNEUROSCI.16-03-01140.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.