Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Activity-dependent short-term enhancement of intercellular coupling

AE Pereda and DS Faber
Journal of Neuroscience 1 February 1996, 16 (3) 983-992; DOI: https://doi.org/10.1523/JNEUROSCI.16-03-00983.1996
AE Pereda
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DS Faber
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

It was reported previously that repeated brief tetanization of the posterior eight nerve can produce long-term homosynaptic potentiations of the electrotonic and chemical components of the mixed EPSP evoked in the Mauthner cell lateral dendrite by a single stimulus to the nerve. We show here that the same stimulus paradigm can lead, alternatively, to short-term enhancements of both excitatory responses. These transient modifications last for approximately 3 min, with a time course similar to post-tetanic potentiation at chemical synapses. However, a different stimulus pattern that transiently increases the presynaptic calcium concentration, paired-nerve stimuli, does not have any significant effect on electrotonic transmission, whereas it facilitates the chemically mediated EPSP. On the other hand, induction of the short-lasting potentiation of coupling, which depended on the discontinuous or burst-like property of the tetanizing paradigm, required NMDA-receptor activation and was blocked by postsynaptic intradendritic injections of the calcium chelator bis(2- aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid. The ineffectiveness of presynaptic calcium in potentiating electrotonic coupling likely reflects the involvement of a calcium-dependent regulatory protein in the postsynaptic cell and suggests that hemichannels on the two sides of a gap junction plaque can be modified independently. NMDA-mediated modulation of gap junctions could be widespread, because both types of channels coexist during development and in several mammalian adult central nervous system structures such as hippocampus.

Back to top

In this issue

The Journal of Neuroscience: 16 (3)
Journal of Neuroscience
Vol. 16, Issue 3
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activity-dependent short-term enhancement of intercellular coupling
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Activity-dependent short-term enhancement of intercellular coupling
AE Pereda, DS Faber
Journal of Neuroscience 1 February 1996, 16 (3) 983-992; DOI: 10.1523/JNEUROSCI.16-03-00983.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Activity-dependent short-term enhancement of intercellular coupling
AE Pereda, DS Faber
Journal of Neuroscience 1 February 1996, 16 (3) 983-992; DOI: 10.1523/JNEUROSCI.16-03-00983.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.