Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development

C Burger and AB Ribera
Journal of Neuroscience 15 February 1996, 16 (4) 1412-1421; DOI: https://doi.org/10.1523/JNEUROSCI.16-04-01412.1996
C Burger
Program in Neuroscience, University of Colorado Health Sciences Center, Denver 80262, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AB Ribera
Program in Neuroscience, University of Colorado Health Sciences Center, Denver 80262, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Developmentally regulated delayed rectifier potassium currents determine the waveform of the action potential in all Xenopus embryonic primary spinal neurons. To examine this developmental program at the molecular level, we have isolated Xenopus Kv2 potassium channel genes Kv2.1 and Kv2.2. Both genes induce functional heterologous expression of delayed rectifier potassium currents. Transcripts from both Kv2 genes are present in developing embryos; however, only Kv2.2 mRNA is detectable in embryonic spinal neurons. Notably, Kv2.2 transcripts localize to ventral spinal neurons, whereas previously described Kv1.1 transcripts are found in dorsal spinal neurons. Thus, spinal neuron subtypes express distinct potassium channel genes, yet they temporally coordinate functional expression of delayed rectifier potassium currents.

Back to top

In this issue

The Journal of Neuroscience: 16 (4)
Journal of Neuroscience
Vol. 16, Issue 4
15 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development
C Burger, AB Ribera
Journal of Neuroscience 15 February 1996, 16 (4) 1412-1421; DOI: 10.1523/JNEUROSCI.16-04-01412.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development
C Burger, AB Ribera
Journal of Neuroscience 15 February 1996, 16 (4) 1412-1421; DOI: 10.1523/JNEUROSCI.16-04-01412.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.