Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells

AR McQuiston, JJ Petrozzino, JA Connor and WF Colmers
Journal of Neuroscience 15 February 1996, 16 (4) 1422-1429; DOI: https://doi.org/10.1523/JNEUROSCI.16-04-01422.1996
AR McQuiston
Department of Pharmacology, University of Alberta, Edmonton, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JJ Petrozzino
Department of Pharmacology, University of Alberta, Edmonton, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JA Connor
Department of Pharmacology, University of Alberta, Edmonton, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WF Colmers
Department of Pharmacology, University of Alberta, Edmonton, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Correction for McQuiston et al., Neuropeptide Y1 Receptors Inhibit N-Type Calcium Currents and Reduce Transient Calcium Increases in Rat Dentate Granule Cells - May 15, 1996

Abstract

Neuropeptide Y (NPY) is far more abundant in the dentate gyrus than elsewhere in the hippocampal formation, but it does not alter the synaptic excitation of dentate granule cells (DGCs) as it does for pyramidal cells in areas CA1 and CA3. NPY inhibited depolarization- induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in DGCs in hippocampal slices, without altering the resting [Ca2+]i. NPY inhibited Ca2+ currents (ICa) via a Y1 receptor in 84% of acutely isolated DGCs and via a Y2 receptor in 31% of the NPY-responsive cells tested. ICa inhibition was completely occluded by omega-conotoxin-GVIA but not by nimodipine. The inhibition of ICa was accompanied by a change in the time course of ICa activation in only 27% of NPY- responsive cells. Only 23% of DGCs responded to NPY when Ba2+ was substituted for extracellular Ca2+ and when [Ca2+]i was strongly buffered. Therefore, NPY inhibits an N-type ICa in DGCs, mainly via Y1 receptors. Furthermore, it seems that more than one mechanism, one of which may be sensitive to [Ca2+]i, may couple NPY receptors to the Ca2+ channels in DGCs. Because the release of dynorphin from DGCs depends in part on N-type currents, NPY receptors are poised to regulate the release of opioid peptides from DGC somata and dendrites.

Back to top

In this issue

The Journal of Neuroscience: 16 (4)
Journal of Neuroscience
Vol. 16, Issue 4
15 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells
AR McQuiston, JJ Petrozzino, JA Connor, WF Colmers
Journal of Neuroscience 15 February 1996, 16 (4) 1422-1429; DOI: 10.1523/JNEUROSCI.16-04-01422.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells
AR McQuiston, JJ Petrozzino, JA Connor, WF Colmers
Journal of Neuroscience 15 February 1996, 16 (4) 1422-1429; DOI: 10.1523/JNEUROSCI.16-04-01422.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.