Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat

JS Lin, Y Hou, K Sakai and M Jouvet
Journal of Neuroscience 15 February 1996, 16 (4) 1523-1537; DOI: https://doi.org/10.1523/JNEUROSCI.16-04-01523.1996
JS Lin
Departement de Medecine Experimentale, Institut National de la Sante et de la Recherche Medicale U52, Faculte de Medecine, Universite Claude Bernard, Lyon, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Hou
Departement de Medecine Experimentale, Institut National de la Sante et de la Recherche Medicale U52, Faculte de Medecine, Universite Claude Bernard, Lyon, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Sakai
Departement de Medecine Experimentale, Institut National de la Sante et de la Recherche Medicale U52, Faculte de Medecine, Universite Claude Bernard, Lyon, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Jouvet
Departement de Medecine Experimentale, Institut National de la Sante et de la Recherche Medicale U52, Faculte de Medecine, Universite Claude Bernard, Lyon, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have demonstrated previously the importance of histaminergic neurons in arousal mechanisms. In addition to their ascending axons, these neurons also send heavy descending inputs to the mesopontine tegmentum (MPT), which plays a key role in cortical activation during wakefulness (W). This anatomical link suggests histaminergic control of the mechanisms of the MPT relevant to behavioral states. In this study, we sought to demonstrate, at the light microscopy level, hypothalamotegmental histaminergic pathways and their topographical interaction with MPT neurons in the cat and to explore further their involvement in sleep-wake control. Using immunohistochemistry of histamine (HA), either alone or together with that of choline- acetyltransferase or tyrosine hydroxylase, a large number of very fine, short and varicose HA-positive fibers and terminal-like dots were detected in the MPT, including the laterodorsal tegmental nucleus, locus coeruleus (LC), LC alpha, and peri-LC alpha. Furthermore, these fibers and terminal-like structures were found in close proximity to a great number of cholinergic or noradrenergic neurons. We also investigated the effects of microadministration of HA agonists and antagonist into the mediodorsal pontine tegmentum on the cortical electroencephalogram (EEG) power spectra and the sleep-wake cycle in freely moving cats. Microinjection of HA or 2-thiazolylethylamine (an H1-receptor agonist) caused a long-lasting suppression of cortical slow activity and an increase in quiet wakefulness (W). Paradoxical sleep, however, was less affected. The effects of HA were attenuated by systemic or in situ pretreatment with mepyramine (an H1-receptor antagonist), which when injected alone produced an increase in slow wave sleep. Microinjection of impromidine (an H2-receptor agonist) into the same area had no effect on either the cortical EEG or W. Because MPT ascending and presumed cholinergic neurons discharge tonically during cortical activation of W and because HA causes excitation of MPT cholinergic neurons via H1 receptors, we hypothesize that the histaminergic descending afferents in the MPT would promote cortical desynchronization and W, at least partially, via activation of H1 receptors situated on cholinergic neurons and that the interactions between histaminergic and cholinergic neurons constitute an important circuit in cortical activation during W.

Back to top

In this issue

The Journal of Neuroscience: 16 (4)
Journal of Neuroscience
Vol. 16, Issue 4
15 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat
JS Lin, Y Hou, K Sakai, M Jouvet
Journal of Neuroscience 15 February 1996, 16 (4) 1523-1537; DOI: 10.1523/JNEUROSCI.16-04-01523.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat
JS Lin, Y Hou, K Sakai, M Jouvet
Journal of Neuroscience 15 February 1996, 16 (4) 1523-1537; DOI: 10.1523/JNEUROSCI.16-04-01523.1996
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.