Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Mechanisms for the maintenance and eventual degradation of neurofilament proteins in the distal segments of severed goldfish mauthner axons

TD Raabe, T Nguyen, C Archer and GD Bittner
Journal of Neuroscience 1 March 1996, 16 (5) 1605-1613; DOI: https://doi.org/10.1523/JNEUROSCI.16-05-01605.1996
TD Raabe
Department of Zoology, University of Texas at Austin 78712–1064, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Nguyen
Department of Zoology, University of Texas at Austin 78712–1064, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Archer
Department of Zoology, University of Texas at Austin 78712–1064, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GD Bittner
Department of Zoology, University of Texas at Austin 78712–1064, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cellular mechanisms that might affect the degradation of neurofilament proteins (NFPs) were examined in the distal segments of severed goldfish Mauthner axons (M-axons), which do not degenerate for more than 2 months after severance. Calpain levels, as determined by reactivity to a polyclonal antibody, remained constant for 80 d postseverance in distal segments of M-axons and then declined from 80 to 85 d postseverance. Calpain activity in rat brain, as determined by a spectrophotometric assay, was much higher than calpain activity in control and severed goldfish brain, spinal cord, muscle, or M-axons. Calpain activity was extremely low in M-axons compared with that in all other tissues and remained low for up to 80 d postseverance in distal segments of M-axons. Phosphorylated NFPs, as determined by Stains-All treatment of SDS gels, were maintained for up to 72 d postseverance and then decreased noticeably at 75 d postseverance when NFP breakdown products appeared on silver-stained gels. By 85 d post-severance, phosphorylated NFPs no longer were detected, and NFP breakdown products were the most prominent bands on silver-stained gels. These results suggest that the distal segments of M-axons survive for months after severance, because NFPs are maintained in a phosphorylated state that stabilizes and protects NFPs from degradation by low levels of calpain activity in the M-axon; the distal segments of severed M-axons degenerate eventually when NFPs no longer are maintained in a phosphorylated state and become susceptible to degradation, possibly by low levels of calpain activity in the M-axon.

Back to top

In this issue

The Journal of Neuroscience: 16 (5)
Journal of Neuroscience
Vol. 16, Issue 5
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms for the maintenance and eventual degradation of neurofilament proteins in the distal segments of severed goldfish mauthner axons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Mechanisms for the maintenance and eventual degradation of neurofilament proteins in the distal segments of severed goldfish mauthner axons
TD Raabe, T Nguyen, C Archer, GD Bittner
Journal of Neuroscience 1 March 1996, 16 (5) 1605-1613; DOI: 10.1523/JNEUROSCI.16-05-01605.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mechanisms for the maintenance and eventual degradation of neurofilament proteins in the distal segments of severed goldfish mauthner axons
TD Raabe, T Nguyen, C Archer, GD Bittner
Journal of Neuroscience 1 March 1996, 16 (5) 1605-1613; DOI: 10.1523/JNEUROSCI.16-05-01605.1996
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.