Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites

TS Otis, YC Wu and LO Trussell
Journal of Neuroscience 1 March 1996, 16 (5) 1634-1644; DOI: https://doi.org/10.1523/JNEUROSCI.16-05-01634.1996
TS Otis
Department of Neurophysiology, University of Wisconsin School of Medicine, Madison 53706, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
YC Wu
Department of Neurophysiology, University of Wisconsin School of Medicine, Madison 53706, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LO Trussell
Department of Neurophysiology, University of Wisconsin School of Medicine, Madison 53706, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The roles of glutamate diffusion, uptake, and channel kinetics in shaping the AMPA receptor EPSC were examined at a calyceal synapse. The EPSC decay was described by three exponential components: two matching desensitizing channel kinetics, and a third component at least 10 times slower. The slowest component had identical voltage dependence to the steady-state AMPA current and was selectively increased and prolonged by blockade of glutamate uptake, indicating that the slow EPSC represented rebinding of glutamate at partially desensitized AMPA receptors. The data were in strong agreement with the predictions of a model of transmitter diffusion from multiple release sites into a large synaptic cleft. Within the first millisecond after release, transmitter concentrations in the cleft fell below millimolar levels, causing the fastest parts of the EPSC to be shaped by channel kinetics. The slowest component was determined by the removal over tens of milliseconds of the final 10–100 microM glutamate by diffusion and uptake. The data and modeling indicate that transmitter uptake and cooperation between release sites are significant determinants of a slow “tail” of glutamate in the synaptic cleft. This slow clearance of glutamate is likely to limit postsynaptic receptor availability through desensitization.

Back to top

In this issue

The Journal of Neuroscience: 16 (5)
Journal of Neuroscience
Vol. 16, Issue 5
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites
TS Otis, YC Wu, LO Trussell
Journal of Neuroscience 1 March 1996, 16 (5) 1634-1644; DOI: 10.1523/JNEUROSCI.16-05-01634.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites
TS Otis, YC Wu, LO Trussell
Journal of Neuroscience 1 March 1996, 16 (5) 1634-1644; DOI: 10.1523/JNEUROSCI.16-05-01634.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.