Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory

K Zhang
Journal of Neuroscience 15 March 1996, 16 (6) 2112-2126; https://doi.org/10.1523/JNEUROSCI.16-06-02112.1996
K Zhang
Department of Cognitive Science, University of California at San Diego, La Jolla, 92093–0515, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The head-direction (HD) cells found in the limbic system in freely mov ing rats represent the instantaneous head direction of the animal in the horizontal plane regardless of the location of the animal. The internal direction represented by these cells uses both self-motion information for inertially based updating and familiar visual landmarks for calibration. Here, a model of the dynamics of the HD cell ensemble is presented. The stability of a localized static activity profile in the network and a dynamic shift mechanism are explained naturally by synaptic weight distribution components with even and odd symmetry, respectively. Under symmetric weights or symmetric reciprocal connections, a stable activity profile close to the known directional tuning curves will emerge. By adding a slight asymmetry to the weights, the activity profile will shift continuously without disturbances to its shape, and the shift speed can be controlled accurately by the strength of the odd-weight component. The generic formulation of the shift mechanism is determined uniquely within the current theoretical framework. The attractor dynamics of the system ensures modality- independence of the internal representation and facilitates the correction for cumulative error by the putative local-view detectors. The model offers a specific one-dimensional example of a computational mechanism in which a truly world-centered representation can be derived from observer-centered sensory inputs by integrating self-motion information.

Back to top

In this issue

The Journal of Neuroscience: 16 (6)
Journal of Neuroscience
Vol. 16, Issue 6
15 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory
K Zhang
Journal of Neuroscience 15 March 1996, 16 (6) 2112-2126; DOI: 10.1523/JNEUROSCI.16-06-02112.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory
K Zhang
Journal of Neuroscience 15 March 1996, 16 (6) 2112-2126; DOI: 10.1523/JNEUROSCI.16-06-02112.1996
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.