Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Selective clustering of GABA(A) and glycine receptors in the mammalian retina

P Koulen, M Sassoe-Pognetto, U Grunert and H Wassle
Journal of Neuroscience 15 March 1996, 16 (6) 2127-2140; https://doi.org/10.1523/JNEUROSCI.16-06-02127.1996
P Koulen
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Sassoe-Pognetto
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U Grunert
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Wassle
Max-Planck-Institut fur Hirnforschung, Frankfurt, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Molecular cloning has revealed a multiplicity of neurotransmitter receptor isoforms with different subunit compositions. Additionally, there is growing evidence that such receptors are clustered at postsynaptic sites of neurons. Thus, the questions arise whether individual neurons express different receptor isoforms and, if so, whether different isoforms are present within the same cluster or are aggregated at distinct postsynaptic sites. We have studied with immunofluorescence methods and antibodies that recognize specific subunits the distribution of glycine and GABA(A) receptors in mammalian retinae. Alpha ganglion cells were injected in rat or rabbit retinae with a fluorescent marker and then immunostained for receptor localization. Clusters of glycine receptors and clusters of the alpha1, and alpha2, alpha3, and gamma2 subunits of the GABA(A) receptor were found on the somatodendritic membranes of Alpha ganglion cells. Double- immunofluorescence experiments with different combinations of the subunit-specific antibodies showed that the alpha1, alpha2, and alpha3 subunits of the GABA(A) receptor are not colocalized within the same clusters. These results indicate that an individual neuron can express several isoforms of the GABA(A) receptor and that these different isoforms are aggregated at distinct postsynaptic sites. This suggests individual sorting mechanisms of GABAa receptors at GABAergic synapses.

Back to top

In this issue

The Journal of Neuroscience: 16 (6)
Journal of Neuroscience
Vol. 16, Issue 6
15 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Selective clustering of GABA(A) and glycine receptors in the mammalian retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Selective clustering of GABA(A) and glycine receptors in the mammalian retina
P Koulen, M Sassoe-Pognetto, U Grunert, H Wassle
Journal of Neuroscience 15 March 1996, 16 (6) 2127-2140; DOI: 10.1523/JNEUROSCI.16-06-02127.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Selective clustering of GABA(A) and glycine receptors in the mammalian retina
P Koulen, M Sassoe-Pognetto, U Grunert, H Wassle
Journal of Neuroscience 15 March 1996, 16 (6) 2127-2140; DOI: 10.1523/JNEUROSCI.16-06-02127.1996
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.