Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey

AK Kreiter and W Singer
Journal of Neuroscience 1 April 1996, 16 (7) 2381-2396; DOI: https://doi.org/10.1523/JNEUROSCI.16-07-02381.1996
AK Kreiter
Max Planck Institute for Brain Research, Frankfurt/Main, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Singer
Max Planck Institute for Brain Research, Frankfurt/Main, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In visual areas of the cerebral cortex, most neurons exhibit preferences for particular features of visual stimuli, but in general, the tuning is broad. Thus, even simple stimuli evoke responses in numerous neurons with differing but overlapping feature preferences, and it is commonly held that a particular feature is encoded in the pattern of graded responses of the activated population rather than in the optimal responses of individual cells. To decipher this population code, responses evoked by a particular stimulus need to be identified and bound together for further joint processing and must not be confounded with responses to other, nearby stimuli. Such selection of related responses could be achieved by synchronizing the respective discharges at a time scale of milliseconds, as this would selectively and jointly enhance their saliency. This hypothesis predicts that a given set of neurons should exhibit synchronized discharges more often when responding to a single stimulus than when activated by different but simultaneously presented stimuli. To test this prediction, recordings were performed with two electrodes from spatially segregated cells in the middle temporal area (MT) of the awake behaving macaque monkey. It was found that cells with overlapping receptive fields, but different preferences for directions of motion, can engage in synchronous activity if they are stimulated with a single moving bar. In contrast, if the same cells are activated with two different bars, each moving in the direction preferred by the cells at the two respective sites, responses show no or much fewer synchronous epochs. Control experiments exclude that this effect is attributable to changes in response amplitude, the mere presence of two stimuli, or the specific orientation of the bars. The critical variable determining the strength of correlation is the extent to which both sites are activated by a common stimulus or by two different stimuli with different directions of motion.

Back to top

In this issue

The Journal of Neuroscience: 16 (7)
Journal of Neuroscience
Vol. 16, Issue 7
1 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey
AK Kreiter, W Singer
Journal of Neuroscience 1 April 1996, 16 (7) 2381-2396; DOI: 10.1523/JNEUROSCI.16-07-02381.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey
AK Kreiter, W Singer
Journal of Neuroscience 1 April 1996, 16 (7) 2381-2396; DOI: 10.1523/JNEUROSCI.16-07-02381.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.