Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons

MJ Orsini, CM Debouck, CL Webb and PG Lysko
Journal of Neuroscience 15 April 1996, 16 (8) 2546-2552; DOI: https://doi.org/10.1523/JNEUROSCI.16-08-02546.1996
MJ Orsini
Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CM Debouck
Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CL Webb
Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PG Lysko
Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recombinant human immunodeficiency virus (HIV-1) Tat protein added to the culture medium of rat cerebellar neurons promoted aggregation and formation of spoke-like neurites in a dose-dependent manner. Tat proteins containing mutations in the Arg-Gly-Asp (RGD) cell adhesion motif or a deletion of the cysteine-rich domain had no effect on neuronal morphology. In contrast, a Tat protein that contained a deletion of the proline-rich domain promoted neuronal aggregation. Aggregation of neurons was inhibited by the addition of monoclonal antibodies directed against the RGD and basic domains of Tat, but not against the proline-rich domain. The same domains of Tat required to induce aggregation also mediated adhesion of neurons to Tat-coated substrates. The HIV-2 Tat protein, which lacks an RGD sequence but contains cysteine-rich and basic domains similar to HIV-1 Tat, induced aggregation and acted as a substrate for adhesion when added at higher concentrations than HIV-1 Tat. Vitronectin, fibronectin, and RGD- containing peptides did not induce morphological changes in neurons or act as substrates for adhesion. The ability of Tat to induce morphological changes and promote adhesion was independent of the ability of Tat to transactivate HIV gene expression. Our results suggest that extracellular Tat protein most likely alters neuronal morphology and mediates adhesion by acting in a manner similar to an extracellular matrix protein.

Back to top

In this issue

The Journal of Neuroscience: 16 (8)
Journal of Neuroscience
Vol. 16, Issue 8
15 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons
MJ Orsini, CM Debouck, CL Webb, PG Lysko
Journal of Neuroscience 15 April 1996, 16 (8) 2546-2552; DOI: 10.1523/JNEUROSCI.16-08-02546.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons
MJ Orsini, CM Debouck, CL Webb, PG Lysko
Journal of Neuroscience 15 April 1996, 16 (8) 2546-2552; DOI: 10.1523/JNEUROSCI.16-08-02546.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.