Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors

C Blanchet, C Erostegui, M Sugasawa and D Dulon
Journal of Neuroscience 15 April 1996, 16 (8) 2574-2584; DOI: https://doi.org/10.1523/JNEUROSCI.16-08-02574.1996
C Blanchet
Laboratoire d'Audiologie Experimentale, Institute National de la Sante et de la Recherche Medicale, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Erostegui
Laboratoire d'Audiologie Experimentale, Institute National de la Sante et de la Recherche Medicale, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Sugasawa
Laboratoire d'Audiologie Experimentale, Institute National de la Sante et de la Recherche Medicale, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Dulon
Laboratoire d'Audiologie Experimentale, Institute National de la Sante et de la Recherche Medicale, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The cholinergic efferent inhibition of mammalian outer hair cells (OHCs) is mediated by a hyperpolarizing K+ current. We have made whole- cell tight-seal recordings from single OHCs isolated from the guinea pig cochlea to characterize the mechanism by which acetylcholine (ACh) activates K+ channels. After ACh application, OHCs exhibited a biphasic response: an early depolarizing current preceding the predominant hyperpolarizing K+ current. The current-voltage (I-V) relationship of the ACh-induced response displayed an N-shape, suggesting the involvement of Ca2+ influx. When whole-cell recording was combined with confocal calcium imaging, we simultaneously observed the ACh-induced K+ current (IK(ACh)) and a Ca2+ response restricted to the synaptic area of the cell. This IK(ACh) could be prevented by loading OHCs with 10 mM of the fast Ca2+ buffer bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra- acetic acid (or BAPTA), therefore allowing the observation of the ACh- induced early current in isolation. This early current revealed nicotinic features because it activated with an intrinsic delay in the millisecond range, reversed nearly in between potassium and sodium equilibrium potentials, and was blocked by curare. However, it was strongly reduced in the absence of external Ca2+, and its I-V relationship displayed an unusual outward rectification at positive membrane potentials and an inward rectification below -60 mV. The results indicate that the cholinergic response of mammalian OHCs involves a “nicotinic-like” nonspecific cation channel through which Ca2+ enters and triggers activation of nearby Ca2+-dependent K+ channels.

Back to top

In this issue

The Journal of Neuroscience: 16 (8)
Journal of Neuroscience
Vol. 16, Issue 8
15 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors
C Blanchet, C Erostegui, M Sugasawa, D Dulon
Journal of Neuroscience 15 April 1996, 16 (8) 2574-2584; DOI: 10.1523/JNEUROSCI.16-08-02574.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors
C Blanchet, C Erostegui, M Sugasawa, D Dulon
Journal of Neuroscience 15 April 1996, 16 (8) 2574-2584; DOI: 10.1523/JNEUROSCI.16-08-02574.1996
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.