Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor

DH Baird, E Trenkner and CA Mason
Journal of Neuroscience 15 April 1996, 16 (8) 2642-2648; DOI: https://doi.org/10.1523/JNEUROSCI.16-08-02642.1996
DH Baird
Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia, 19129, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Trenkner
Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia, 19129, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CA Mason
Department of Neurobiology and Anatomy, Medical College of Pennsylvania and Hahnemann University, Philadelphia, 19129, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cerebellar granule neurons in vitro specifically arrest the extension of their appropriate presynaptic axons, mossy fibers. This “stop- growing signal” may be an essential step in the formation and specificity of synapses. Here, we have tested whether ionotropic glutamate receptors are involved in the stop-growing signal. When explants of basilar pontine nuclei, a mossy fiber source, were cultured on granule neurons, most pontine neurites terminated <200 microm from their explant of origin, a criterion for the stop-growing signal. In contrast, treatment with the NMDA antagonist D(-)-2-amino-5- phosphonopentanoic acid (D-AP5) greatly increased the number of pontine neurites extending beyond 300 microm, whereas treatment with NMDA reduced the number of pontine neurites extending beyond 200 microm. A non-NMDA agonist (AMPA) and antagonist (6-cyano-7-nitroquinoxaline-2,3- dione) did not alter pontine neurite lengths. None of these agents affected neurite outgrowth from pontine explants in the absence of granule neurons, nor did any agent affect the survival of granule neurons. These results indicate that NMDA and D-AP5 specifically perturb an interaction between axons and target cells necessary for the stop-growing signal, and that NMDA receptors are critical for the development of a major cerebellar afferent system. These findings also suggest that NMDA-sensitive refinement of axon arbors during later development may involve the direct regulation of axon extension by target neurons.

Back to top

In this issue

The Journal of Neuroscience: 16 (8)
Journal of Neuroscience
Vol. 16, Issue 8
15 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor
DH Baird, E Trenkner, CA Mason
Journal of Neuroscience 15 April 1996, 16 (8) 2642-2648; DOI: 10.1523/JNEUROSCI.16-08-02642.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor
DH Baird, E Trenkner, CA Mason
Journal of Neuroscience 15 April 1996, 16 (8) 2642-2648; DOI: 10.1523/JNEUROSCI.16-08-02642.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.