Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain

CG Craig, V Tropepe, CM Morshead, BA Reynolds, S Weiss and D van der Kooy
Journal of Neuroscience 15 April 1996, 16 (8) 2649-2658; DOI: https://doi.org/10.1523/JNEUROSCI.16-08-02649.1996
CG Craig
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Tropepe
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CM Morshead
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BA Reynolds
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Weiss
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D van der Kooy
Deparment of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The lateral ventricle subependyma in the adult mammalian forebrain contains both neural stem and progenitor cells. This study describes the in situ modulation of these subependymal neural precursor populations after intraventricular administration of exogenous growth factors. In vivo infusion of epidermal growth factor (EGF) into adult mouse forebrain for 6 consecutive days resulted in a dramatic increase in the proliferation and total number of subependymal cells and induced their migration away from the lateral ventricle walls into adjacent parenchyma. Immediately after EGF infusion, immunohistochemical characterization of the EGF-expanded cell population demonstrated that >95% of these cells were EGF receptor- and nestin-positive, whereas only 0.9% and 0.2% labeled for astrocytic and neuronal markers, respectively. Seven weeks after EGF withdrawal, 25% of the cells induced to proliferate after 6d of EGF were still detectable; 28% of these cells had differentiated into new astrocytes and 3% into new neurons in the cortex, striatum, and septum. Newly generated oligodendrocytes were also observed. These in vivo results (1) confirm the existence of EGF-responsive subependymal neural precursor cells in the adult mouse forebrain and (2) suggest that EGF acts directly as a proliferation, survival, and migration factor for subependymal precursor cells to expand these populations and promote the movement of these cells into normal brain parenchyma. Thus, in situ modulation of endogenous forebrain precursor cells represents a novel model for studying neural development in the adult mammalian brain and may provide insights that will achieve adult replacement of neurons and glia lost to disease or trauma.

Back to top

In this issue

The Journal of Neuroscience: 16 (8)
Journal of Neuroscience
Vol. 16, Issue 8
15 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain
CG Craig, V Tropepe, CM Morshead, BA Reynolds, S Weiss, D van der Kooy
Journal of Neuroscience 15 April 1996, 16 (8) 2649-2658; DOI: 10.1523/JNEUROSCI.16-08-02649.1996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain
CG Craig, V Tropepe, CM Morshead, BA Reynolds, S Weiss, D van der Kooy
Journal of Neuroscience 15 April 1996, 16 (8) 2649-2658; DOI: 10.1523/JNEUROSCI.16-08-02649.1996
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.