Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE

Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part II: Mediation by Calcium/Calmodulin-Dependent Protein Kinase II

Mirjana Maletic-Savatic, Thillai Koothan and Roberto Malinow
Journal of Neuroscience 1 September 1998, 18 (17) 6814-6821; https://doi.org/10.1523/JNEUROSCI.18-17-06814.1998
Mirjana Maletic-Savatic
1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thillai Koothan
1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roberto Malinow
1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Calcium-evoked dendritic exocytosis (CEDE), demonstrated in cultured hippocampal neurons, is a novel mechanism that could play a role in synaptic plasticity. A number of forms of neuronal plasticity are thought to be mediated by calcium/calmodulin-dependent protein kinase II (CaMKII). Here, we investigate the role of CaMKII in CEDE. We find that the developmental time course of CEDE parallels the expression of αCaMKII, a dominant subunit of CaMKII. An inhibitor of this enzyme, KN-62, blocks CEDE. Furthermore, 7 d in vitro neurons (which normally do not express αCaMKII nor show CEDE) can undergo CEDE when infected with a recombinant virus producing αCaMKII. Expression of a constitutively active CaMKII produces dendritic exocytosis in the absence of calcium stimulus, and this exocytosis is blocked by nocodazole, an inhibitor of microtubule polymerization that also blocks CEDE. These results indicate that CEDE is mediated by the activation of CaMKII, consistent with the view that CEDE plays a role in synaptic plasticity.

  • FM1-43
  • exocytosis
  • dendrites
  • pyramidal neurons
  • hippocampal cultures
  • CaMKII
  • KN-62
  • immunocytochemistry
  • vaccinia virus
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 18 (17)
Journal of Neuroscience
Vol. 18, Issue 17
1 Sep 1998
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part II: Mediation by Calcium/Calmodulin-Dependent Protein Kinase II
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part II: Mediation by Calcium/Calmodulin-Dependent Protein Kinase II
Mirjana Maletic-Savatic, Thillai Koothan, Roberto Malinow
Journal of Neuroscience 1 September 1998, 18 (17) 6814-6821; DOI: 10.1523/JNEUROSCI.18-17-06814.1998

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part II: Mediation by Calcium/Calmodulin-Dependent Protein Kinase II
Mirjana Maletic-Savatic, Thillai Koothan, Roberto Malinow
Journal of Neuroscience 1 September 1998, 18 (17) 6814-6821; DOI: 10.1523/JNEUROSCI.18-17-06814.1998
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • FM1-43
  • exocytosis
  • dendrites
  • pyramidal neurons
  • hippocampal cultures
  • CaMKII
  • KN-62
  • immunocytochemistry
  • vaccinia virus

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
  • Distinct Developmental Modes and Lesion-Induced Reactions of Dendrites of Two Classes of Drosophila Sensory Neurons
  • Functional Dissociation among Components of Remembering: Control, Perceived Oldness, and Content
Show more ARTICLE
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.