Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
ARTICLE

Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons

Jeffrey C. Magee
Journal of Neuroscience 1 October 1998, 18 (19) 7613-7624; https://doi.org/10.1523/JNEUROSCI.18-19-07613.1998
Jeffrey C. Magee
1Neuroscience Center, Louisiana State University Medical Center, New Orleans, Louisiana 70112
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Step hyperpolarizations evoked slowly activating, noninactivating, and slowly deactivating inward currents from membrane patches recorded in the cell-attached patch configuration from the soma and apical dendrites of hippocampal CA1 pyramidal neurons. The density of these hyperpolarization-activated currents (Ih) increased over sixfold from soma to distal dendrites. Activation curves demonstrate that a significant fraction of Ih channels is active near rest and that the range is hyperpolarized relatively more in the distal dendrites. Ih activation and deactivation kinetics are voltage-and temperature-dependent, with time constants of activation and deactivation decreasing with hyperpolarization and depolarization, respectively.Ih demonstrated a mixed Na+–K+ conductance and was sensitive to low concentrations of external CsCl. Dual whole-cell recordings revealed regional differences in input resistance (Rin) and membrane polarization rates (τmem) across the somatodendritic axis that are attributable to the spatial gradient of Ihchannels. As a result of these membrane effects the propagation of subthreshold voltage transients is directionally specific. The elevated dendritic Ih density decreases EPSP amplitude and duration and reduces the time window over which temporal summation takes place. The backpropagation of action potentials into the dendritic arborization was impacted only slightly by dendriticIh, with the most consistent effect being a decrease in dendritic action potential duration and an increase in afterhyperpolarization. Overall, Ih acts to dampen dendritic excitability, but its largest impact is on the subthreshold range of membrane potentials where the integration of inhibitory and excitatory synaptic inputs takes place.

  • hyperpolarization-activated current
  • dendrite
  • hippocampus
  • synaptic integration
  • CA1 pyramidal neuron
  • action potential backpropagation
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 18 (19)
Journal of Neuroscience
Vol. 18, Issue 19
1 Oct 1998
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons
Jeffrey C. Magee
Journal of Neuroscience 1 October 1998, 18 (19) 7613-7624; DOI: 10.1523/JNEUROSCI.18-19-07613.1998

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons
Jeffrey C. Magee
Journal of Neuroscience 1 October 1998, 18 (19) 7613-7624; DOI: 10.1523/JNEUROSCI.18-19-07613.1998
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • hyperpolarization-activated current
  • dendrite
  • hippocampus
  • synaptic integration
  • CA1 pyramidal neuron
  • action potential backpropagation

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Calcium Influx via L- and N-Type Calcium Channels Activates a Transient Large-Conductance Ca2+-Activated K+Current in Mouse Neocortical Pyramidal Neurons
  • Netrin-1 Is a Chemorepellent for Oligodendrocyte Precursor Cells in the Embryonic Spinal Cord
  • Selective Enhancement of Synaptic Inhibition by Hypocretin (Orexin) in Rat Vagal Motor Neurons: Implications for Autonomic Regulation
Show more ARTICLE
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.