Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
PreviousNext
ARTICLE

Experience-Induced Neurogenesis in the Senescent Dentate Gyrus

Gerd Kempermann, H. Georg Kuhn and Fred H. Gage
Journal of Neuroscience 1 May 1998, 18 (9) 3206-3212; DOI: https://doi.org/10.1523/JNEUROSCI.18-09-03206.1998
Gerd Kempermann
The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Georg Kuhn
The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, and Department of Neurology, University of Regensburg, D-93053 Regensburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fred H. Gage
The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We demonstrate here that under physiological conditions neurogenesis continues to occur in the dentate gyrus of senescent mice and can be stimulated by living in an enriched environment. Neurogenesis was investigated by confocal microscopy of three-channel immunofluorescent staining for the proliferation marker bromodeoxyuridine (BrdU) and neuronal and glial markers. Quantification was performed with unbiased stereological counting techniques. Neurogenesis decreased with increasing age. Stimulation of adult and aged mice by switching from standard housing to an enriched environment with opportunities for social interaction, exploration, and physical activity for 68 d resulted in an increased survival of labeled cells. Phenotypic analysis revealed that, in enriched living animals, relatively more cells differentiated into neurons, resulting in a threefold net increase of BrdU-labeled neurons in 20-month-old mice (105 vs 32 cells) and a more than twofold increase in 8-month-old mice (684 vs 285 cells) compared with littermates living under standard laboratory conditions. Corresponding absolute numbers of BrdU-positive astrocytes and BrdU-positive cells that did not show colabeling for neuronal or glial markers were not influenced. The effect on the relative distribution of phenotypes can be interpreted as a survival-promoting effect that is selective for neurons. Proliferation of progenitor cells appeared unaffected by environmental stimulation.

  • aging
  • brain
  • mouse
  • hippocampus
  • neurogenesis
  • stem cell
  • progenitor cell
  • enriched environment
  • plasticity
  • stereology
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 18 (9)
Journal of Neuroscience
Vol. 18, Issue 9
1 May 1998
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Experience-Induced Neurogenesis in the Senescent Dentate Gyrus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Experience-Induced Neurogenesis in the Senescent Dentate Gyrus
Gerd Kempermann, H. Georg Kuhn, Fred H. Gage
Journal of Neuroscience 1 May 1998, 18 (9) 3206-3212; DOI: 10.1523/JNEUROSCI.18-09-03206.1998

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Experience-Induced Neurogenesis in the Senescent Dentate Gyrus
Gerd Kempermann, H. Georg Kuhn, Fred H. Gage
Journal of Neuroscience 1 May 1998, 18 (9) 3206-3212; DOI: 10.1523/JNEUROSCI.18-09-03206.1998
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • aging
  • brain
  • mouse
  • hippocampus
  • neurogenesis
  • stem cell
  • progenitor cell
  • enriched environment
  • plasticity
  • stereology

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas
  • Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity
  • Differential Role of Mitogen-Activated Protein Kinase in Three Distinct Phases of Memory for Sensitization in Aplysia
Show more ARTICLE
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.
JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.