Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
ARTICLE

Distinct Functions for Cotransmitters Mediating Motor Pattern Selection

Dawn M. Blitz and Michael P. Nusbaum
Journal of Neuroscience 15 August 1999, 19 (16) 6774-6783; DOI: https://doi.org/10.1523/JNEUROSCI.19-16-06774.1999
Dawn M. Blitz
1Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Nusbaum
1Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Motor patterns are selected from multifunctional networks by selective activation of different projection neurons, many of which contain multiple transmitters. Little is known about how any individual projection neuron uses its cotransmitters to select a motor pattern. We address this issue by using the stomatogastric ganglion (STG) of the crab Cancer borealis, which contains a neuronal network that generates multiple versions of the pyloric and gastric mill motor patterns. The functional flexibility of this network results mainly from modulatory inputs it receives from projection neurons that originate in neighboring ganglia. We demonstrated previously that the STG motor pattern selected by activation of the modulatory proctolin neuron (MPN) results from direct MPN modulation of the pyloric rhythm and indirect MPN inhibition of the gastric mill rhythm. The latter action results from MPN inhibition of projection neurons that excite the gastric mill rhythm. These projection neurons are modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2 (CPN2). MPN excitation of the pyloric rhythm is mimicked by bath application of proctolin, its peptide transmitter. Here, we show that MPN uses only its small molecule transmitter, GABA, to inhibit MCN1 and CPN2 within their ganglion of origin. We also demonstrate that MPN has no proctolin-mediated influence on MCN1 or CPN2, although exogenously applied proctolin directly excites these neurons. Thus, motor pattern selection occurs during MPN activation via proctolin actions on the STG network and GABA-mediated actions on projection neurons in the commissural ganglia, demonstrating a spatial and functional segregation of cotransmitter actions.

  • neuromodulation
  • central pattern generation
  • stomatogastric ganglion
  • proctolin
  • GABA
  • projection neurons
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 19 (16)
Journal of Neuroscience
Vol. 19, Issue 16
15 Aug 1999
  • Table of Contents
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distinct Functions for Cotransmitters Mediating Motor Pattern Selection
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Distinct Functions for Cotransmitters Mediating Motor Pattern Selection
Dawn M. Blitz, Michael P. Nusbaum
Journal of Neuroscience 15 August 1999, 19 (16) 6774-6783; DOI: 10.1523/JNEUROSCI.19-16-06774.1999

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distinct Functions for Cotransmitters Mediating Motor Pattern Selection
Dawn M. Blitz, Michael P. Nusbaum
Journal of Neuroscience 15 August 1999, 19 (16) 6774-6783; DOI: 10.1523/JNEUROSCI.19-16-06774.1999
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • neuromodulation
  • central pattern generation
  • stomatogastric ganglion
  • proctolin
  • GABA
  • projection neurons

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Cytoskeletal and Morphological Alterations Underlying Axonal Sprouting after Localized Transection of Cortical Neuron AxonsIn Vitro
  • Amiloride-Insensitive Currents of the Acid-Sensing Ion Channel-2a (ASIC2a)/ASIC2b Heteromeric Sour-Taste Receptor Channel
  • Aberrant Chloride Transport Contributes to Anoxic/Ischemic White Matter Injury
Show more ARTICLE
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.